Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTodd_Trimble
    • CommentTimeJun 23rd 2010
    • (edited Jun 23rd 2010)

    As I’ve already said elsewhere, I’ve been working on this entry and trying to give a precise definition based on my hunches of what guys like Steenrod really meant by “a convenient category of topological spaces”. (I must immediately admit that I’ve never read his paper with that title. Of course, he meant specifically compactly generated Hausdorff spaces, but nowadays I think we can argue more generally.)

    I also said elsewhere that my proposed axiom on closed and open subspaces might be up for discussion. The other axioms maybe not so much: dropping any of them would seem to be a deal-breaker for what an algebraic topologist might consider “convenient”. Or so I think.

    • CommentRowNumber2.
    • CommentAuthorTodd_Trimble
    • CommentTimeJun 23rd 2010

    I’ve just taken a quick look through Steenrod’s paper, which is very nice. He confirms my hunch that closure under certain subspace inclusions should be one of the desiderata, but perhaps I spoke too soon when I asserted that all known examples are closed under all open subspace inclusions. (That’s okay; I can live with that.) Otherwise I am beginning to feel that convenient category of topological spaces is on fairly solid historical ground.

    I hadn’t heard of these 0\aleph_0-spaces of E. Michael.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeNov 24th 2010

    some student sends me an email telling me that after looking at some nnLab entries it has not become clear whether or not the category of locally compact topological spaces is cartesian closed. Maybe somebody feels like expanding on that

    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeNov 24th 2010

    Of course, he meant specifically compactly generated Hausdorff spaces, but nowadays I think we can argue more generally.

    On the contrary, Steenrod meant any category of topological spaces which is closed with respect to a number of constructions (a little bit more than what we call closed cartesian category) AND contains most of the standard examples. He actually lists abstract requirements on a convenient category before exhibiting the prime example, the category of compactly generated Hausdorff spaces.

    • CommentRowNumber5.
    • CommentAuthorTim_Porter
    • CommentTimeNov 24th 2010
    • (edited Nov 24th 2010)

    A point of history. Steenrod (1967) was not the originator of the term. Ronnie used the term in that same sense in his thesis (1961) and in two published papers. I am not sure if Ronnie was the earliest to use the term in that way. It would seem that Steenrod had heard Ronnie talk on the subject, had seen the papers and had found the term useful. It is unfortunate that the term has become ’hallowed’ when it looks just like a convenient term to use. In any case, Todd, you can ask Ronnie for his version or look at his Topology and Groupoids book page 199 where he tells the story in some detail. (If someone wants to include something along these lines please don’t use this but quote Ronnie or get him to write a short historical note expressly for the Lab.) It is perhaps a variant of Baez’s Law.

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 24th 2010

    @Urs #3: well, I guess everyone knows “no it isn’t”, but I’d be happy to expand on that.

    @Zoran #4: I don’t believe I wrote that (doesn’t sound like me! (-:), but thanks for the information. I’ll edit later.

    @Tim #5: thanks for mentioning this! I’ll send Ronnie some email if his book isn’t available online.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeNov 24th 2010

    I see that Mike did react to my request from #3. Thanks!!

    • CommentRowNumber8.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 24th 2010

    @Zoran: whoops, it seems I did write that after all, but that was evidently before I had looked at Steenrod’s paper. It doesn’t matter, since nothing of that sort was said in the nLab article. The article seems consistent with your information.

    • CommentRowNumber9.
    • CommentAuthorCallot
    • CommentTimeNov 24th 2010
    @ #3: Todd_Trimble says "it isn t". By intuition this sounds clear, but where can I get a counterexample? I didn find one yet!
    Thanks in advance.
    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeNov 24th 2010

    I guess everyone knows “no it isn’t”,

    As I said, there was a student who emailed me who did not know it, looked at the entry, and still did not get that information. So the entry needed to be improved.

    but I’d be happy to expand on that.

    Mike already did.

    • CommentRowNumber11.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 24th 2010
    • (edited Nov 24th 2010)

    Last I looked, Mike didn’t give an explicit example that Callot is seeking. But an example might be \mathbb{N}^\mathbb{N} where \mathbb{N} has the usual discrete topology. Discrete spaces are of course locally compact, and the compact-open topology is the usual product topology. But this exponential is not locally compact, because there is an explicit homeomorphism between this space and the space of irrationals in the interval (0,1)(0, 1) with its usual subspace topology. This homeomorphism is given by the regular continued fraction expansion.

    • CommentRowNumber12.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 24th 2010

    Sorry, Urs, I didn’t mean to sound snotty back in #6. By “everyone” I actually meant the core band of contributors here; sorry for the confusion. And I had already gotten the message that Mike addressed this.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeNov 24th 2010
    • (edited Nov 24th 2010)

    No problem, Todd. Let’s just all try to keep in mind that the nLab is used not just by us contributors.

    • CommentRowNumber14.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 24th 2010

    Yes. I apologize. I had been in a hurry.

    • CommentRowNumber15.
    • CommentAuthorCallot
    • CommentTimeNov 25th 2010
    • (edited Nov 25th 2010)

    Thank you Todd, but I still don t know whether this is enough. Isn t it, that actually one has to proove that there is no topology X \X on \mathbb{N}^{\mathbb{N}} such that ( ,X) (\mathbb{N}^\mathbb{N},\X) is locally compact and such that X is describing continous convergence - to get a real counterexample with this. I knew the argument that \mathbb{N}^{\mathbb{N}} endowed with the product topology resp. the compact-open-topology is not locally compact before. It ll be great if you could help me with this!

    • CommentRowNumber16.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 25th 2010
    • (edited Nov 25th 2010)

    @Callot: fair enough. I didn’t mean to seem dismissive in throwing out that example. Let me try again.

    I thought the question is whether the category of locally compact Hausdorff spaces is cartesian closed. Certainly “cartesian” is not an issue: the cartesian product of two locally compact Hausdorff spaces is their usual topological product.

    Next, we examine “closure”. An exponential \mathbb{N}^\mathbb{N} in LCHLCH would be, by definition, a representing object for the functor

    hom LCH(×,):LCH opSet\hom_{LCH}(- \times \mathbb{N}, \mathbb{N}): LCH^{op} \to Set

    and this determines the ’right’ topology on \mathbb{N}^\mathbb{N}, never mind whether or not this happens to be the compact-open topology. If you agree with this, then the course is fixed and the topology on \mathbb{N}^\mathbb{N} has to be the product topology, for we have

    hom LCH(X×,)hom LCH( X,) hom(X,)hom(X, )\hom_{LCH}(X \times \mathbb{N}, \mathbb{N}) \cong \hom_{LCH}(\sum_{\mathbb{N}} X, \mathbb{N}) \cong \prod_{\mathbb{N}} \hom(X, \mathbb{N}) \cong \hom(X, \prod_{\mathbb{N}} \mathbb{N})

    (all isomorphisms natural in XX; the first isomorphism uses discreteness of \mathbb{N}). And then the argument I gave above applies. Is this satisfactory?

    • CommentRowNumber17.
    • CommentAuthorCallot
    • CommentTimeNov 26th 2010
    hey tod,
    first I want to say sorry for my late response, but I justed moved to a new flat and I still don t ve internet. thank you again for your more detailled version. it is only that until now i have actually a very little knowledge about category theory (never saw hom(-xN)...before). So far as I understood the concept of cartesian closedness is about the existence of natural funtion spaces as defined with Definition 3.1.1 in "Foundations of Topology" for instance:

    http://books.google.de/books?id=YY14k_ntfq0C&printsec=frontcover&dq=an+approach+to+convenient+topology&source=bl&ots=IEOmqzIqAU&sig=NQrlQjGnN0LC7VUhr155HeVsWIw&hl=de&ei=MjfwTNeHAcX2sgaxzej5Cg&sa=X&oi=book_result&ct=result&resnum=4&ved=0CDUQ6AEwAw#v=onepage&q&f=false

    So if you could assure that we are talking about the same property, I will spend some effort to introduce myself to your terminology (since I made no progress to assure myself having a look to the definition of cartesian closedness in nlab).

    Thank you very much!
    • CommentRowNumber18.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 27th 2010

    There is only one notion of cartesian closedness, so we are certain to agree. I only have limited page views of that Google book, but a category is cartesian closed if it has finite products and if for any two objects XX, YY, there is an object Y XY^X (thought of as a “space of maps from XX to YY”) such that for any object ZZ, there is a bijection between the set of maps ZY XZ \to Y^X and the set of maps Z×XYZ \times X \to Y, and this bijection is natural in ZZ.

    I have looked at the nLab page on cartesian closed categories, and it is rather impoverished. I intend to add some expositional details, but I also encourage you to begin learning category theory from an established text, such as Categories for the Working Mathematician. You will be amply repaid for your efforts.

    I am guessing your native language is German. My first name probably does look a little unusual to native German speakers (my in-laws are German by birth). Sometimes it’s spelled T-o-d, but mine has two d’s. It’s an old English name with several meanings, including “fox” – traces of that meaning can be seen in English surnames like “Todhunter”. Of course “Tod” has a meaning in German, but it’s not one of my favorites. :-) I am named Todd because there is a (somewhat distant) family connection to Abraham Lincoln, whose wife’s name was Mary Todd Lincoln.

    • CommentRowNumber19.
    • CommentAuthorCallot
    • CommentTimeNov 29th 2010
    Since you ve a double d in your name I didn t fear. I was more wondering that you figured out my native language out of two comments or so.
    I ve heard about this book categories for the working ... and will start my study now. Thank you a lot.! When I get through you ll receive an other comment. All the best!
    • CommentRowNumber20.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 17th 2011

    It seems to me that my last reply to Callot in #16 is still not quite a proof; the issue is not whether \mathbb{N}^\mathbb{N} under the usual topological product topology is locally compact (it is of course not), but whether infinite products exist in the category of locally compact Hausdorff spaces. They do not, but we should still give an honest proof.

    To settle this for good, I’ll change the example to \mathbb{R}^\mathbb{N}. If such a countable product existed in LCHAbL C H A b, then we could easily give it a structure of Hausdorff TVS over the real numbers. But it is well-known that a locally compact Hausdorff TVS is finite-dimensional. So LCHAbLCHAb is not complete. It follows that LCHLCH cannot be complete either (it it were, then the category of abelian group objects LCHAbLCHAb would also be complete).

    I have added some words to this effect at locally compact space.

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeJul 3rd 2013
    • (edited Jul 3rd 2013)

    I have fixed the code for the numbered Definitions/Theorems at conventient category of topological spaces.

    Notice that with the new CSS, if you use wrong code such as

     .num_thm
    

    (which is not recognized)

    instead of

     .num_theorem
    

    (which is), then the formatting comes out really bad now.

    • CommentRowNumber22.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMar 4th 2020

    Deleted mathforge.

    diff, v45, current

    • CommentRowNumber23.
    • CommentAuthorDavidRoberts
    • CommentTimeSep 28th 2020

    Unified formatting of references somewhat.

    diff, v47, current

    • CommentRowNumber24.
    • CommentAuthorUrs
    • CommentTimeSep 28th 2021

    I have tried to bring the list of references here more into chronological order.

    This list is lacking more comments on what it is that the given items contributed to the idea of convenient categories.

    I gather that the three articles by R. Brown (now here) are claimed to be precursors to Steenrod’s, and so I have moved them out of the list of other approaches (quasi-topological and what not) and related to Steenrod’s article more closely.

    diff, v51, current

    • CommentRowNumber25.
    • CommentAuthorUrs
    • CommentTimeSep 30th 2021

    I have added pointer to:

    and

    • {#Gaucher09} Philippe Gaucher, Section 2 of: Homotopical interpretation of globular complex by multipointed d-space, Theory and Applications of Categories, vol. 22, number 22, 588-621, 2009 (arXiv:0710.3553)

    and I have grouped this (here), together with Escardo, Lawson & Simpson 2004, under:

    “Discussion in the generality that subsumes compactly generated topological spaces and Delta-generated topological spaces and all cases of subcategory-generated spaces in between:”

    diff, v55, current

    • CommentRowNumber26.
    • CommentAuthorUrs
    • CommentTimeSep 30th 2021
    • (edited Sep 30th 2021)

    I have expanded the Examples-section a fair bit:

    In a new first subsection “Categories of colimits of generating spaces” (here) I have recorded more of the original insights from Vogt 1971, already much along the lines of the later development by Escardo, Lawson & Simpson 2004 (which was the only reference that the prvious version of the entry had mentioned here).

    Then in a second new subsection (here) I have recorded the observation that once one has gone to the “really convenient” (J. Smith) category of Delta-generated space, the door opens up yet ever more convenience by embedding into the quasi-topos of diffeological spaces, then the cohesive topos of smooth sets, and finally the cohesive \infty-topos of smooth \infty-groupoids – whose shape modality still sees the correct homotopy types of all topological spaces, under this embedding.

    I have also added a diagram showing this state of affairs.

    diff, v57, current

    • CommentRowNumber27.
    • CommentAuthorUrs
    • CommentTimeSep 30th 2021
    • (edited Sep 30th 2021)

    [ typo in diagram now fixed ]

    • CommentRowNumber28.
    • CommentAuthorUrs
    • CommentTimeOct 5th 2021

    added this pointer:

    diff, v61, current

    • CommentRowNumber29.
    • CommentAuthorUrs
    • CommentTimeOct 5th 2021

    added pointer to:

    diff, v61, current

    • CommentRowNumber30.
    • CommentAuthorjesuslop
    • CommentTimeMay 17th 2022

    grammar glitch

    diff, v62, current