Author: John Baez Format: MarkdownItexExplained why the square of the finite power set functor is (or "can be made into") the monad for Boolean algebras.
<a href="https://ncatlab.org/nlab/revision/diff/BoolAlg/14">diff</a>, <a href="https://ncatlab.org/nlab/revision/BoolAlg/14">v14</a>, <a href="https://ncatlab.org/nlab/show/BoolAlg">current</a>
Explained why the square of the finite power set functor is (or “can be made into”) the monad for Boolean algebras.
Author: John Baez Format: MarkdownItexI corrected my description of the monad for boolean algebras.
<a href="https://ncatlab.org/nlab/revision/diff/BoolAlg/16">diff</a>, <a href="https://ncatlab.org/nlab/revision/BoolAlg/16">v16</a>, <a href="https://ncatlab.org/nlab/show/BoolAlg">current</a>
I corrected my description of the monad for boolean algebras.