Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorFinnLawler
    • CommentTimeAug 8th 2010

    Some tidying up and additions at simplex category, in particular a section on its 2-categorical structure, and more on universal properties.

    I’ve edited the definition to focus more on the augmented simplex category Δ a\Delta_a instead of the ’topologists’ Δ\Delta’, but I haven’t changed their names, because it seemed to me that that was the best way to keep everyone involved in the discussion at that page happy. (I also changed the ordinal sum functor from ++ to \oplus, after Tim’s suggestion.)

    • CommentRowNumber2.
    • CommentAuthorRodMcGuire
    • CommentTimeAug 9th 2010

    The addition of natural numbers extends to a tensor product-type functor on both Δ\Delta and Δ a\Delta_a. If we visualise an object, [n][n] of Δ a\Delta_a, as above, as a totally ordered set {0<1<<n1}\{0 \lt 1 \lt \cdots \lt n-1\}, then from two such [m][m] and [n][n], we can form a new one by making all the elements of [n][n] strictly greater than those in [m][m].

    I would add between these two sentences something along the lines of:

    which can be seen as the disjoint union (⊎, the coproduct of Set) of the underlying sets with the order augmented so that all of [m] is less than all of [n].

    and edit the following text to flow with this.

    The link to tensor could conceivably handle this but it doesn’t discuss the basic case of disjoint union which is used here. Anyway, it think it is probably best to state this very simple notion at this point.

    • CommentRowNumber3.
    • CommentAuthorFinnLawler
    • CommentTimeAug 9th 2010

    I agree, although in my defence I didn’t write that bit. I’ve edited it following your suggestion.

    Remember, though, that the best thing to do if you come across something you don’t like about an nLab page is just to go ahead and change it yourself! Just make sure you let us know here what you’ve done.

    From About:

    … if you feel existing material needs to be changed, you can do so. If you feel further material needs to be added, different perspectives need to be amplified, you can add new paragraph, headed by a suitable headline. Be bold: The nnLab will be the better the more people decide to contribute to it.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeSep 3rd 2012

    There was some weird formatting of the definitions right at the beginning of Simplex category - Definition. I have fixed that.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeNov 13th 2012

    at simplex category in the section on the duality to intervals, I have added a pointer to Joyal’s 1997 preprint. I gather that’s where this duality was first made explicit, is that right?

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 13th 2012

    Urs, my feeling is that it’s been known much longer than that. I mean, I was in the audience when he was first exposing his approach to higher categories via Θ\Theta, and I think I myself knew it at the time. But I’d have to hunt down an actual reference, and meanwhile Joyal’s article is a reference. :-)

    • CommentRowNumber7.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 13th 2012

    I changed the wording at the end of the section on duality to intervals (again, although my sense of history is hazy, I’m reasonably sure that this duality had been known for a long time, as a special case of the Stone duality between finite posets and finite distributive lattices; perhaps one should go back to Joyal’s original proof – sometime in the 70’s I think – that the topos of simplicial sets classifies strict intervals, for more on the history of this observation).

  1. I added a wee bit of simple(x) combinatorics, explaining how to count the number of morphisms nmΔ a\mathbf{n} \to \mathbf{m} \in \Delta_a.

    • CommentRowNumber9.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 5th 2015
    • (edited Sep 5th 2015)

    I added just a bit more, plus a slight rearrangement so that I could better see how Chu-Vandermonde applies. Hope that’s alright.

    Edit: Actually, I had to fix it because m\mathbf{m} has m+1m+1 elements, etc.

    • CommentRowNumber10.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 5th 2015
    • (edited Sep 5th 2015)

    While I was at it, I wrote a short article Chu-Vandermonde identity.

    (Huh – why does it tell me that the article doesn’t exist? How about here.)

    • CommentRowNumber11.
    • CommentAuthorNoam_Zeilberger
    • CommentTimeSep 5th 2015
    • (edited Sep 5th 2015)

    Re: #9, I thought the conventions in the article were that mΔ a\mathbf{m} \in \Delta_a has mm elements and [m]Δ[m] \in \Delta has m+1m+1 elements, so if we’re counting morphisms in Δ a\Delta_a then the formula and the examples should be bumped back. Otherwise #10 looks nice.

    Edit: okay, after a few attempts I’ve bumped all the values to what I think are the correct ones for Δ a\Delta_a, you can have a look.

    • CommentRowNumber12.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 5th 2015
    • (edited Sep 5th 2015)

    Oh, sorry Noam. I’ll take care of it.

    Edit: Looks like you got’em all. Thanks, and sorry again.

  2. oh, I noticed that you already gave a couple derivations of the number of morphisms in Δ a\Delta_a here on the nForum a few years ago. The second one via the image factorization is I think essentially the same as the one currently in the article, but it seems like a cleaner way of putting it. Perhaps we could import that explanation (and/or the direct “bijective” argument) into the article?

    • CommentRowNumber14.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 6th 2015

    I don’t particularly mind, although I have mixed feelings about the second method. (I’m not convinced it’s any cleaner.) The first method is probably at least worth a remark. Alternatively, we can always link to the nForum discussion (which I assume is “internet-stable”).

  3. I went ahead and added a link.

    • CommentRowNumber16.
    • CommentAuthorYuxi Liu
    • CommentTimeJul 3rd 2020

    fixed the simplicial identities

    diff, v70, current

    • CommentRowNumber17.
    • CommentAuthorYuxi Liu
    • CommentTimeJul 3rd 2020

    fixed the simplicial identities

    diff, v70, current

    • CommentRowNumber18.
    • CommentAuthorYuxi Liu
    • CommentTimeJul 3rd 2020

    slightly stronger statement: Δ a\Delta_a is not braided

    diff, v70, current

    • CommentRowNumber19.
    • CommentAuthorYuxi Liu
    • CommentTimeJul 3rd 2020

    the bijective argument is called the stars and bars argument

    diff, v70, current

    • CommentRowNumber20.
    • CommentAuthorDavidRoberts
    • CommentTimeJul 3rd 2020

    In some countries. It’s not a great name.

    • CommentRowNumber21.
    • CommentAuthorRichard Williamson
    • CommentTimeFeb 28th 2021
    • (edited Feb 28th 2021)

    Our for the moment mysterious editor made the previous edit (v71) to this page. I am reverting the change made in that edit to the definition of the augmented simplex category as it would make it over-complicated, but am retaining the content added in the edit as a remark following the definition.

    diff, v72, current

    • CommentRowNumber22.
    • CommentAuthorHurkyl
    • CommentTimeJun 9th 2021

    Added sections on “extra degeneracies”.

    diff, v73, current

    • CommentRowNumber23.
    • CommentAuthorUrs
    • CommentTimeJun 19th 2021

    added pointer to:

    • Alexander Grothendieck, p. 107 (10 of 21) in: Techniques de construction et théorèmes d’existence en géométrie algébrique III : préschémas quotients, Séminaire Bourbaki : années 1960/61, exposés 205-222, Séminaire Bourbaki, no. 6 (1961), Exposé no. 212, (numdam:SB_1960-1961__6__99_0, pdf)

    diff, v75, current

  4. Fix typo in description of face map for augmented simplex category

    Calin Tataru

    diff, v80, current