Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeAug 23rd 2010

    wrote something at secondary characteristic class

    • CommentRowNumber2.
    • CommentAuthorTobyBartels
    • CommentTimeAug 23rd 2010

    Tip:

    * You can link to this item.
    {#good}
    
    * You can't link to this item. {#bad}
    
    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeAug 23rd 2010

    Tip:

    Thanks!

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeAug 24th 2010
    • (edited Aug 24th 2010)

    What’s the rule being exemplified there? Don’t put the anchor on the same line as the item?

    • CommentRowNumber5.
    • CommentAuthorTobyBartels
    • CommentTimeAug 24th 2010

    @ Mike

    Yes.

    • CommentRowNumber6.
    • CommentAuthorzskoda
    • CommentTimeAug 27th 2010
    • (edited Aug 27th 2010)

    In the email which I have forwarded to the nForum last week, Jim said, among the rest, that the notion is slightly more general than the vanishing of curvature case. I have not quite undertood the remark but we should take it to the account. Jim said

    The standard meaning of secondary (char classes or coh ops or even two centuries ago invaraints of algebraic forms) is of something that is not defined in general but only when some relation holds among primaries e.g Massey ops secondary coh ops

    for char classes, curvature vanishing is an extreme example but what is more usual cf Chern-Simons is a char class that vanishes for dimensional reasons on a class of manifolds

    (well CS is accounted for the Urs’s way, and I do not see it as a counterexample // Zoran)

    By the way, with public provider of the mobile internet again problems in nlab (not nForum): Access denied. Your IP address, 95.168.108.22, was found on one or more DNSBL blocking list(s).

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeAug 27th 2010

    I had a hard time finding a reference that admits an actual precise definition of “secondary characteristic class”.

    Moreover, even the semi-definitions that are in use are clearly not equivalent.

    For instance in the school following Simons-Sullivans, authors use “secondary characteristic class” as a synonym for “Cheeger-Simons differential character”.

    I wonder if Jim has a precise definition. On the other hand I am wondering if what he alludes to would be any different:

    if we have a relation among characteristic classes, then clearly this means, I guess, that there is some combination of them that makes a vanishing characteristic class. I mean, if classes cc and dd satisgy a relatin like c=ddc = d\smile d then clearly the class cddc - d \smile d vanishes.

    So is what Jim alludes to really more general?

    • CommentRowNumber8.
    • CommentAuthorzskoda
    • CommentTimeSep 15th 2010
    • (edited Sep 15th 2010)

    Can we somehow reconcile the “vanishing” point of view on secondary classes with a relative/obstruction point of view ? I mean in other works you emphasised on Chern-Simons obstruction gerbe which happens when solving the lifting problem. But lifting problem can be at the level of Lie algebra reflected by not having the usual Chern-Weil theory, with usual Chevalley-Eilenberg complex, but rather the one with relative Chevalley-Eilenberg complex CE(g,k)CE(g,k), where we lift from the group KK integrating kk to group GG integrating gg; and where the inclusion KGK\subset G is a homotopy equivalence. This point of view on Chern-Simons via relative Lie cohomology is (if I understood the point), reviewed in Sec. 2 of Kontsevich’s article

    • M. Kontsevich, Rozansky-Witten classes via formal geometry, Compositio Mathematica, 115 (1999), 115-127, pdf

    The relative point of view for these classes seems to me more general than requiring some specific vanishings.

    • CommentRowNumber9.
    • CommentAuthorzskoda
    • CommentTimeSep 15th 2010

    The relative point of view for these classes seems to me more general than requiring some specific vanishings.

    Of course, relative means vanishing in a sense, but not in the sense of curvature. I am not saying that it is not equivalent, but it seems more direct to have it burried in the relative cocycle conditions.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeSep 15th 2010
    • (edited Sep 15th 2010)

    Zoran,

    this is a very good and important point. I should spend a bit more time thinking about it, but here is a first idea about what’s going on and how it fits into the general story.

    Can we assume KGK \hookrightarrow G to be a normal subgroup for the moment?

    Then we have a crossed module of the same name, and thus a fiber sequence of \infty-groupoids

    BKBGB(KG) \mathbf{B}K \to \mathbf{B}G \to \mathbf{B}(K \to G)

    This says that given a GG-bundle cocycle XC(U)BGX \stackrel{\simeq}{\leftarrow}C(U) \to \mathbf{B}G the obstruction to restricting it to an HH-bundle cocycle is the composite 2-bundle cocycle

    XC(U)BGB(KG)X \stackrel{\simeq}{\leftarrow}C(U) \to \mathbf{B}G \to \mathbf{B}(K \to G)

    (so that’s the nonabelian “lifting”-gerbe). Indeed, as you can see in components, a trivialization of this B(KG)\mathbf{B}(K \to G)-cocycle is precisely a section of the quotient G/KG/K-bundle.

    So possibly for the relative case one should consider GG-bundles with connection, then send them further to (KG)(K \to G)-2-bundles with connection, and then, if these turn out to be flat, compute their Chern-Simons invariants as in \infty-Chern-Weil theory (which here just will boil down to the ordinary relative CW-theory).

    Evidently, unless I am hallucinating, this would actually be a good example of the \infty-CW story. I should flesh it out.

    Not sure right now what to do when KK is not normal in GG, though.

    • CommentRowNumber11.
    • CommentAuthorzskoda
    • CommentTimeSep 15th 2010

    Looks very nice for start. If one gets this entirely clear it may be very useful relating to a number of interesting cases.

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeSep 15th 2010
    • (edited Sep 15th 2010)

    Just back from dinner. Probably its different:

    now I think we should start with the quotient K\G and then look at the action groupoid (K\G)//G. Then a reduction of the GG-bundle is a lift of the cocycle through the projection (K\G)//G –> *//G = B G.

    So then we should be looking for the invariant polynomials and Chern-Simons elements of the corresponding action Lie algebroid.

    Just a quick remark, will get back to this tomorrow when I have a minute.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeSep 14th 2020

    added pointer to:

    diff, v16, current

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeSep 14th 2020

    added pointer to:

    • Hélène Esnault, Algebraic Differential Characters of Flat Connections with Nilpotent Residues, In: Baas N., Friedlander E., Jahren B., Østvær P. (eds.) Algebraic Topology, Abel Symposia, vol 4. Springer 2009 (doi:10.1007/978-3-642-01200-6_5)

    diff, v16, current

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeSep 14th 2020

    added pointer to:

    diff, v16, current

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeNov 23rd 2020

    added this pointer:

    diff, v18, current