Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorhilbertthm90
    • CommentTimeJan 9th 2011

    I’ve added a section called 𝒜gerbes\mathcal{A}-gerbes at gerbe (as a stack) in an attempt to add something about the differential geometry question that was raised. I’m just a lowly grad student so be gentle if I’ve accidentally written something crazy.

    • CommentRowNumber2.
    • CommentAuthorhilbertthm90
    • CommentTimeJan 11th 2011

    I propose we break off the section on differential geometry to a new page possibly called “gerbe (in differential geometry)” or something. There is a lot to be said here, and mostly it just feels a little awkward to impose some different fundamental assumptions than the rest of the article (namely that the base of the stack is a smooth manifold).

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeJan 11th 2011

    Please do!

    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeJan 11th 2011
    • (edited Jan 11th 2011)

    There is an entry differentiable stack.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeJan 13th 2011

    just for the record and to remind us to come back to it, I have created a stub for infinity-gerbe.

    • CommentRowNumber6.
    • CommentAuthorhilbertthm90
    • CommentTimeJan 13th 2011

    Maybe the definition of differentiable stack is more general than the one given (or I’m being overly pedantic), but I think moving the article to differentiable stack wouldn’t be good since the gerbes that show up in differential geometry aren’t necessarily differentiable stacks (since they are on the site defined by the manifold and not the entire site Diff, and maybe they aren’t geometric; I haven’t checked).

    • CommentRowNumber7.
    • CommentAuthorDavidRoberts
    • CommentTimeJan 13th 2011

    One can have a differentiable stack over a space - take it as being a stack having a map to Diff/X.

    • CommentRowNumber8.
    • CommentAuthorhilbertthm90
    • CommentTimeJan 13th 2011

    Oh, of course. Thanks. I’ve just moved stuff over and started a stub gerbe (in differential geometry).

    • CommentRowNumber9.
    • CommentAuthorDavidRoberts
    • CommentTimeJan 13th 2011

    In addition, a differentiable stack over X is presented by a groupoid over X. One example is if you have a bundle of groups with fibres isomorphic to a given (abelian) Lie group AA - then you get an AA-gerbe which, even if trivial, is not BA\mathbf{B}A. This connects more to when people talk about a sheaf of groups as the ’structure group’ of the gerbe.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeJan 13th 2011
    • (edited Jan 13th 2011)

    Yes, one needs to be aware of the two different contexts for stacks that are usually discussed, often withouth explicitly stating which one is which:

    there is the site Diff or CartSp or similar for the big (2,1)-topos Sh (2,1)(Diff)Sh_{(2,1)}(Diff) of stacks on DiffDiff. That’s where differentiable stacks are disucssed in. Then for every object XDiffX \in Diff there is the site for the small topos of XX, usually taken to be (Diff/X) openembedding(Diff/X)_{open embedding}, that’s where “gerbes on XX” are typically discussed in.

    Of course both are related. A morphism 𝒦j(X)\mathcal{K} \to j(X) in the big stack topos Sh (2,1)(Diff)Sh_{(2,1)}(Diff) (for jj the yoneda embedding) determines an object in Sh (2,1)(Diff/X)Sh_{(2,1)}(Diff/X).

    A little bit of technical discussion of this is at over-oo-topos: as oo-sheaves on the big oo-site of an object.

    I guess it’s clear, but one has to keep in mind which (2,1)-topos one is speaking about. For instance when one says

    if you have a bundle of groups with fibres isomorphic to a given (abelian) Lie group AA - then you get an AA-gerbe which, even if trivial, is not BA\mathbf{B}A.

    then what is implicitly meant is that this gerbe is not the deloopong of AA regarded in the big (2,1)(2,1)-topos. It is however the delooping of AA in the small (2,1)(2,1)-topos of XX.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeJan 13th 2011
    • (edited Jan 13th 2011)

    I have added to the entry gerbe the fully general definition, and then a little bit of unwinding it and a little bit of discussion of how the two different perspectives on them arise.

    I hope this serves a purpose of leading over to the list of “sub-entries” that we are lsiting.

    • CommentRowNumber12.
    • CommentAuthorhilbertthm90
    • CommentTimeJan 17th 2011

    Now that I’ve hunted around for what already existed in the nLab, I’ve found that lots of the fundamental things I thought were missing actually aren’t. See my comment at gerbe (in differential geometry).

    • CommentRowNumber13.
    • CommentAuthorjcmckeown
    • CommentTimeJan 17th 2011
    • (edited Jan 17th 2011)

    It's not bad to have distributed comments also assembled together. On the contrary, having access to a particular distillate can help focus study. There are many perspectives, even within the nPOV.

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeJan 17th 2011

    I’ve found that lots of the fundamental things I thought were missing actually aren’t.

    Sorry, looking at your comment at the entry now, I see that I had not been aware that this is what you were looking for, or I would have said something.

    For situatons like this we have the “floating context tables-of-contents”. I have added one to gerbe (in differential geometry) now.

    On this general topic of higher analogs of bundles with connection we have quite a bit on the nnLab.

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeJan 17th 2011
    • (edited Jan 17th 2011)

    I wrote:

    On this general topic of higher analogs of bundles with connection we have quite a bit on the nnLab.

    I am in the process of polishing parts of these accounts. Given the latest exchanges here, It seems to me that the entry

    would be the one most specifically addressing the kind of interest expressed here: “geometric models for higher classes in ordinary differential cohomology”.

    I have just spent a few minutes with polishing and expanding the introduction to that entry. Maybe this is of interest here. I, for one, would be interested in whatever comments you might have.

    (The remainder of the entry presents an ab initio derivation of higher bundle gerbes with connection from “first principles”, namely from the intrinsic differential cohomology inside any cohesive (∞,1)-topos applied to that of smooth ∞-groupoids. The exposition of that probably deserves further polishing, which I’ll try to get to, soon.)

    • CommentRowNumber16.
    • CommentAuthorhilbertthm90
    • CommentTimeJan 17th 2011

    Ah. Well I only took up the cause because I was looking at the gerbe (as a stack) article and found someone had asked specifically about those topics (looking at an old copy of the page it says “Daniel: Please, would someone mind explain this with detail? I am interested in understand quantization and somehow, this thing comes up all the time… I got it from the entry on wikipedia on gerbes, but it was not explained.” “Tim: I will get there but the route is not that short! It is however not that long either.”), so I just assumed they weren’t in other places already.

    One thing led to another, … , but maybe they were curious not about the constructions but how they actually play a role in quantization? I have Jean-Luc Brylinski’s book, but that isn’t incredibly useful to answer this other question. He only talks about Dirac’s monopole construction. I’m not sure if there is some high level way to talk about quantization in these terms in general, since I don’t know anything about quantization. And in any case, there does seem to be several pages on exactly this including geometric quantization which seems to be what was asked about. Sorry about that.

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeJan 17th 2011

    (looking at an old copy of the page it says “Daniel: Please, would someone mind explain this with detail? I am interested in understand quantization and somehow, this thing comes up all the time… I got it from the entry on wikipedia on gerbes, but it was not explained.” “Tim: I will get there but the route is not that short! It is however not that long either.”)

    Ah. I didn’t know that this is the question we are talking about. Nor did I know – or at least not remember – that this exchange was present on an earlier version of the page.

    The bundle gerbes in quantum field theory as they are discussed by Stevenson, Mickelsson, Murray, Wang are all – as far as I am aware – realizations of the degree-3 part of the family index of a family of dirac operators, so they are one component of the quantum anomaly for certain QFTs.

    This is a special case of the general refinement of the Chern character on differential K-theory to ordinary differential cohomology, hence to nn-gerbes for all nn. For instance section 6 of Bunke-Schick Differential K-theory, A survey.

    This is stuff of which we have only somewhat vague indications on the nnLab so far. Would be nice to eventually have more details on this.