Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMike Shulman
    • CommentTimeOct 24th 2009

    Inspired by the discussion at directed n-graph and finite category, added some examples and further explanation to computad.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeOct 24th 2009

    Thanks, Mike. I have added a section on computads as cofibrant resolutions -- at least for strict omega-categories.

    I am still wondering about that question I had back then when we had the blog discussion on this: how does free omega-category on a "globular infinity-graph" = computad relate to free category on a "simplicial oo-graph" = simplicial set.

    It would be strange if both concepts were not equivalent. Here Michael Barr said that he "strongly suspects" that the free omega-category on a simplicial set is not cofibrant. I haven't made an effort to attack this question formally, but purely intuitively I would on the contrary strongly suspect that it is. What am I missing?

    • CommentRowNumber3.
    • CommentAuthorMike Shulman
    • CommentTimeOct 24th 2009
    • (edited Oct 24th 2009)

    "Globular \infty-graph" seems to me like a poor name for "computad"—it makes me think instead of just a globular set. Why not just say "computad"?

    The only thing I can think of right now that could spoil it for simplicial sets might be the presence of degeneracy maps, which computads don't have.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeOct 29th 2009

    Daniel Schaeppi gives a detailed reply to Mike's question at computad

    • CommentRowNumber5.
    • CommentAuthorTim_Porter
    • CommentTimeMar 27th 2010

    I have queried the discussion of terminology in computad. It seems to suggest that in general one should use an earlier term, (and I have not checked the original definition of computad in Street's paper). When is the earliest mention of polygraph in the literature?

    A related question is when should one term be considered `better' than another? Some of the terms used in our various areas are, quite frankly, dreadful! The intuition behind 'computad' was to generalise monad in some way, but I was not that convinced when I heard it. ...?

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeMar 27th 2010
    • (edited Mar 27th 2010)

    You are likely quite right here, Tim. I think I added that comment on terminology originally, because when I once used the term "polygraph" in a blog entry, people jumped at me and told me I should better be saying "computad".

    You should feel free to edit the entry accordingly, I think. You don't need to enclose your comment in a query box if chances are high that you are the person with thourough understanding of the subject.

    • CommentRowNumber7.
    • CommentAuthorHarry Gindi
    • CommentTimeMar 27th 2010

    Computad seems like the name for a robot villain in a campy science fiction movie. It seems to associate higher category theory with fads in programming (probably the people who jumped down your throat at the café). I much prefer to call it a polygraph.

    • CommentRowNumber8.
    • CommentAuthorTim_Porter
    • CommentTimeMar 27th 2010
    • (edited Mar 27th 2010)

    I would suggest using computad in the context of describing categories and n-categories, whilst polygraph for the (same) general notion when applied to rewriting. I am working with Philippe Malbos and Yves Guiraud who work in Rewriting and tend to use polygraph, hence my prejudice! I have put a `synonym' page at polygraph, with that in mind.

    • CommentRowNumber9.
    • CommentAuthorMike Shulman
    • CommentTimeMar 28th 2010

    "Polygraph" makes me think of the version of graphs which underlie polycategories.

    Is there a good reason to use a "synonym" page rather than a redirect? I mean, if the notions are really the same, shouldn't we just have one page which mentions both terminologies?

    • CommentRowNumber10.
    • CommentAuthorMike Shulman
    • CommentTimeMay 22nd 2010

    bump. no one answered my question in #9.

    • CommentRowNumber11.
    • CommentAuthorTodd_Trimble
    • CommentTimeMay 22nd 2010

    I personally feel a redirect suffices (unless “polygraph” needs disambiguation – it doesn’t that I know of).

    • CommentRowNumber12.
    • CommentAuthorMike Shulman
    • CommentTimeMay 24th 2010

    I added some more discussion to computad, including a complete and simpler definition due to Richard Garner that works for algebras over any globular operad. I’ll give people some more time to object before redirecting polygraph.

    • CommentRowNumber13.
    • CommentAuthorDavidRoberts
    • CommentTimeMay 24th 2010
    • (edited May 25th 2010)

    To quote from computad:

    The goal there [Street’s article on 2-computads] was to describe which 2-categories are “finitely presented” (the presentation being given by a 2-computad) in order to describe the correct notion of “finite 2-limit”.

    How weak is the notion of finiteness here? Is ’posessing a finite number of isomorphism classes and each hom-set finite’ ok? What about other cardinality bounds? (countable, regular,…) It took me far too long, but I just realised I need 2-computads for a project on 2-category localisations, and as with 1-categories, the boundary where size issues matter needs to be mapped out. For example, the 2-category of internal groupoids, anafunctors and transformations is locally essentially small (and locally locally small) when (external) Choice and internal WISC holds, and this is a localisation (as you well know) of the 2-category of internal categories. In this instance there is a 2-category of fractions, but in general this hasn’t been done - let alone size issues.

    • CommentRowNumber14.
    • CommentAuthorMike Shulman
    • CommentTimeMay 24th 2010

    A 2-category with finitely many objects, arrows, and 2-cells is finitely presented in Street’s sense; the point is that the converse need not hold (as a trivial example, BB\mathbb{N} is finitely presented by a single object and a single endomorphism, but not finite). I think the converse is more or less true for κ\kappa-presented categories for κ>ω\kappa\gt\omega, though.

    • CommentRowNumber15.
    • CommentAuthorDavidRoberts
    • CommentTimeMay 25th 2010

    What I meant was that what if one has a non-finite 2-computad such that the free 2-category on it is equivalent to a finite 2-category? Is this enough? (ditto for higher cardinals) I imagine there’s a notion of equivalence of 2-computads, is this defined intrinsically or depending on equivalence of free 2-categories on them? (I’ll think about the 1-computad=directed graph case in the meantime).

    Really I think I only care about the distinction between small and non-small, so (a pair of) inaccesible cardinals should be enough to ponder.

    • CommentRowNumber16.
    • CommentAuthorMike Shulman
    • CommentTimeMay 25th 2010

    The limits in question are indexed by diagrams of 2-categories, not by diagrams of 2-computads. So what matters is the existence of a computad of a certain cardinality generating the 2-category, and any finite 2-category can certainly be presented in terms of finite computads. It makes no difference whether the finite 2-category could also be presented using infinite computads.

    If what you care about is limits over categories that are not finite but are equivalent to finite ones, then of course the distinction doesn’t matter if you’re looking at fully weak “bi” limits, whereas if you care about strict 2-limits then I wouldn’t expect knowing something about an equivalent 2-category to tell you much of anything.

    • CommentRowNumber17.
    • CommentAuthorDavidRoberts
    • CommentTimeMay 25th 2010

    Ah, we have a bit of communication problem. I’m not interested particularly in limits, but in bounded (finite or small) presentation. If I construct a 2-computad of a certain size, hopefully small, how big is the free 2-category on it? (did I say weak 2-cat? I meant it - I must be turning into an Australian category theorist of sorts) In other words, does the adjunction between 2Comp and 2Cat (hmm, which 2Cat?) restrict to one between small 2-computads and locally essentially small 2-categories?

    • CommentRowNumber18.
    • CommentAuthorMike Shulman
    • CommentTimeMay 25th 2010

    Ah. The free 2-category on a 2-computad of size <κ\lt\kappa will always also be of size <κ\lt \kappa for any uncountably infinite cardinal κ\kappa, since there are only ever countably many free composites to add in. The only mild subtlety is that a finite 2-computad can generate a countably infinite 2-category. Does that answer your question?

    • CommentRowNumber19.
    • CommentAuthorDavidRoberts
    • CommentTimeMay 25th 2010

    Yes, thanks.

  1. At computad, I removed a reference added by someone with the name “Richard Parker” which seemed to be spam: A link titled as “Makkai, All Vedic Maths Tricks for computads”.

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeNov 15th 2014

    Thanks.

    • CommentRowNumber22.
    • CommentAuthorMike Shulman
    • CommentTimeJun 30th 2016

    I added to computad a sketch of a generalization from globular sets to arbitrary inverse diagrams.

    • CommentRowNumber23.
    • CommentAuthorTim_Porter
    • CommentTimeJun 7th 2023
    • (edited Jun 7th 2023)

    I removed the cross reference to polygraph as that now redirects to … that same page on computads.

    diff, v32, current

    • CommentRowNumber24.
    • CommentAuthorUrs
    • CommentTimeFeb 7th 2024

    added pointer to:

    (here and at weak omega-category)

    diff, v34, current

    • CommentRowNumber25.
    • CommentAuthorvarkor
    • CommentTimeJun 12th 2024

    Fixed a typo.

    diff, v35, current