Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTim_Porter
    • CommentTimeMay 1st 2011

    A point of information. These constructions are due to Charles Wells in this particular setting and to Jonathan Leech, (H-coextensions of monoids, vol. 1, Mem. Amer. Math. Soc, no. 157, American Mathematical Society, 1975) in the single object case, and McLane introduces the category of factorisations I think. Charlie Wells even pushes things a bit further than Baues. Hans does not seem to have known of that work. (Charles Wells, Extension theories for categories (preliminary report), (available from http://www.cwru.edu/artsci/math/wells/pub/pdf/catext.pdf), 1979. ) I have been meaning to have a go at this entry as I have written up a modern version of Wells especially in the non-Abelian case. There is a very nice interpretation of Natural System as a lax functor. (I will do this some time…. but I can make the notes available to anyone interested.)

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMay 1st 2011

    These constructions […] in this particular setting […]

    Are you referring to the nLab entry category of factorizations?

    • CommentRowNumber3.
    • CommentAuthorTim_Porter
    • CommentTimeMay 1st 2011

    Yes. Baues and Wirshing defined this but Wells had followed Leech in using it to define a cohomology of categories/monoids. That definition relates to properties in monoid theory as such. Wells also made comments about non-Abelian cohomology in this context.

    A natural system of Abelian groups corresponds to an Abelian group object in the category of O-categories over the Base (with functors fixed on objects). Wells had noted, more or less, that group objects in that category gave something lax. In fact I fiddled about last year and showed that the ’correct’ analogue of a natural system in a non-Abelian context would be a lax functor from the base BB to Gp[1]Gp[1], the monoidal category suspension of the ‘Cartesian monoidal’ category of groups. The proof is easy once the concepts are sorted out and is the Grothendieck construction (surprise, surprise) but in disguise. These then correspond to group objects in Cat O/BCat_O/B where OO is the set of objects of BB and Cat oCat_o is the cat of small ’O-objected’ categories etc. Wells cohomology then classifies torsors for the given coefficient group. (That gives the idea. The proofs are fairly easy although I took a long time to find some of them!) I have not taken the ideas further than Wells did yet.

    • CommentRowNumber4.
    • CommentAuthorTim_Porter
    • CommentTimeMay 1st 2011
    • (edited May 1st 2011)

    I have changed a few things in the entry. The main facts were already in Baues-Wirsching cohomology.