Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeOct 29th 2009
    • (edited Oct 29th 2009)

    created spectral triple, but so far a bit bizarre:

    I give an unorthodox category-theoretic VAGUE definition, which I have reason to think is the right one

    and then I record an unusual reference on vonNeumann spectral triple (just because at MO somebody asked for this and I don't like to dig out a link just to throw it away after one reference use like a paper napkin )

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeOct 30th 2009
    But von Neumann algebras are a special case of C-star algebras (usually not interesting for the same purposes to which C-star algebras are).
    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeOct 30th 2009

    I have to admit I haven't actually looked at that article on "vonNeumann spectra triples". But I guess some aspect of the definition must differ, otherwise the author wouldn't have called it that way.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeNov 23rd 2010
    • (edited Nov 23rd 2010)

    added references on point particle limits of 2d CFTs to spectral triples, and also some other links

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeNov 23rd 2010

    more references (now also the standard ones! :-)

    • CommentRowNumber6.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 23rd 2010

    If

    A spectral triple is algebraic data that mimics the geometric data provided by a smooth Riemannian manifold with spin structure and generalizes it to noncommutative geometry.

    Is it possible to have algebraic data that mimics the geometric data provided by a smooth Riemannian manifold with spin structure and string structure (and then fivebrane structure) and generalizes it to noncommutative geometry?

    • CommentRowNumber7.
    • CommentAuthorzskoda
    • CommentTimeNov 23rd 2010
    • (edited Nov 23rd 2010)

    It is a Spin Spin^{\mathbb{C}} structure not usual SpinSpin structure if this makes a difference.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeNov 23rd 2010
    • (edited Nov 23rd 2010)

    Is it possible to have algebraic data that mimics the geometric data provided by a smooth Riemannian manifold with spin structure and string structure

    That’s supposed to be what a 2-spectral triple is, which is supposed to be the data given by a 2d superconformal QFT that behaves as if it is the worldvolume theory of the heterotic/type II superstring.

    Pretty close to fully formalizing this is the work surveyed at (2,1)-dimensional Euclidean field theories and tmf. (The String structure condition that you are looking for appears right at the beginning in this entry.)

    But there are many other known approaches that must be effectively encodings of the same kind of data, such as certain vertex operator algebras, speicifcally certain chiral de Rham complexes. Also Costello has more on this in terms of his factorization algebras. Hopefully eventually somebody writes it all out nicely.

    But the general upshot is: yes, the algebraic data we are talking about it is that encoding the worldvolume theory of the fundamental super pp-brane propagating on the corresponding type of geoemtry. There ought to be also a 6-spectral triple that corresponds to geometries with Fivebrane structures, yes, but I am not aware of much concrete progress in getting that.

    It is a Spin Spin^{\mathbb{C}} structure not usual SpinSpin structure if this makes a difference.

    I think these variants all corespond to slight variants in the axioms of the spectral triple and can all be accounted for. For instance see the sentence right beneath theorem 1.2 here which says that the “reality condition” on the spectral triple makes it pick Spin-geometry among Spin cSpin^{c}-geometries.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeNov 23rd 2010

    I have slightly expanded 2-spectral triple in reply to David’s question.

    • CommentRowNumber10.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 24th 2010

    Thanks. What about the “…and generalizes it to noncommutative geometry” part? Does that make any sense in the 2-spectral situation?

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeNov 24th 2010
    • (edited Nov 24th 2010)

    What about the “…and generalizes it to noncommutative geometry” part? Does that make any sense in the 2-spectral situation?

    Yes, it makes sense. You need to find the characterization of the algebraic properties of those 2d SCFTs that come from your desired target space (Riemannian with string structure, say). Then you just declare that every SCFT with these abstract properties defines a “noncommutative string Riemannian manifold”, even if its space of states is not that of a string on a Riemannnian manifold.

    A simple example of the general kind of approach here is spelled out in some detail in the article by Roggenkamp and Wendland that is cited in the entry. They show that the family of 2d CFTs that go by the name “minimal models” are “noncommutative 2-geometry” deformations of the standard interval [0,1][0,1] equipped with a dilaton field. Whatever that means, think of it as analogous geometric data as saying “Riemannian manifold with string structure”.

    So generally you can look at an abstract 2d (S)CFT ZZ and ask what type of genuine σ\sigma-model SCFT it behaves like. Then you can say that ZZ is a “noncommutative” generalization of such a type of geometry.

    This is a standard and basic way to go about things in string theory, but there it is not usually formalized or thought of in quite the way we are after here. But for instance one of the early major results in string theory was the flop transition which is related to this phenomenon: what is called the flop transition is a continuous path in the space of 2-spectral triples=2d SCFTs which goes through points that are genuine geometries at the beginning and the end, but passes in between through a point which is not an ordinary geometry (the “Gepner model”). So it connects two types of ordinary (“commutative”) geometries that are not connected in the space of ordinary geometries. In fact they have different topology (that’s what the word “flop” alludes to).

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeNov 24th 2010

    at flop transition there is now a tiny little bit of literature on what I just mentioned

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeApr 8th 2014

    Sombody emailed me asking for and suggesting more accurate historical references at spectral triple and more emphasis on the essentially equivalent and older concept of unbounded Fredholm modules.

    I have added those references, added the relevant cross-pointers, and highlighted the relation to Fredholm modules more.

    Of course the entry still does not contain actual precise content. Maybe somebody with energy and time comes along and feels like adding something.

    • CommentRowNumber14.
    • CommentAuthorTim_Porter
    • CommentTimeApr 8th 2014
    • (edited Apr 8th 2014)

    The webpage link at Henri Moscovici was dead. I changed it. Please check it is the one needed as it does not seem to lead anywhere!

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeOct 29th 2019

    added pointer to today’s

    • Latham Boyle, Shane Farnsworth, The standard model, the Pati-Salam model, and “Jordan geometry” (arxiv:1910.11888)

    diff, v28, current

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeDec 2nd 2019

    added pointer to today’s

    • Ludwik Dabrowski, Andrzej Sitarz, Multiwisted real spectral triples (arXiv:1911.12873)

    diff, v29, current

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeMar 10th 2020

    added pointer to today’s

    • R. da Rocha, A. A. Tomaz, Hearing the shape of inequivalent spin structures and exotic Dirac operators (arXiv:2003.03619)

    diff, v31, current

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeJun 15th 2022

    added (here) pointer to today’s

    • Fabien Besnard, Shane Farnsworth, Particle models from special Jordan backgrounds and spectral triples [[arXiv:2206.07039]]

    diff, v33, current