Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
I have stumbled across MV algebras. MV = multivalued as they are the multivalued counterparts of Boolean algebras corresponding to Luzasiewicz multivalued logics. They also have links with C*-algebras. (I will create a stub shortly.) Does anyone here know anything about them? They look interesting. (Stub created.)
No, this is my first acquaintance with them. Yes, they do look interesting! Looking over those notes you referred to, it seems that they give examples of non-Boolean $\ast$-autonomous posets. That together with the completeness theorem makes them interesting to me.
Do they form a Mal’cev variety, I wonder?
It was Phil Scott who mentioned them to me and I thought they looked as if they could be useful.
I’ve just added a Properties section, listing a few that came to mind or that I read about. In particular, I answered my own question: they do form a Mal’cev variety.
Phil Scott has pointed out his preprint with Mark Lawson, so I have added a link at MV algebras
1 to 5 of 5