Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeAug 30th 2011

    added to Cartan connection

    • definition

    • a standard reference

    • a standard example

    • CommentRowNumber2.
    • CommentAuthorjim_stasheff
    • CommentTimeAug 31st 2011
    Hope you made it clear early on which Cartan you are referring to!
    since both Elie and Henri have versions
    • CommentRowNumber3.
    • CommentAuthorzskoda
    • CommentTimeAug 31st 2011

    Elie, of course.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeAug 31st 2011
    • (edited Aug 31st 2011)

    I didn’t yet. I always mix them up. (Not the concepts, but whose name goes with which).

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeDec 2nd 2014
    • (edited Dec 2nd 2014)

    It is about time to add some abstract axiomatization of Cartan connections in cohesive homotopy theory. (Thanks to David Corfield for pushing me.)

    I have now added to Cartan connection a Definition – In terms of smooth moduli stacks of the traditional concept, formulated in terms of lifts of modulating maps XBG connX \to \mathbf{B}G_{conn}.

    This is closely related to the discussion at orbit method and I have added cross-links. (I’d dare say that this relation is something one would never have seen without the stacky formulation in both these entries).

    The fully general definition for \infty-groups in any cohesive \infty-topos is now rather straightforward. I’ll add it once I have thouhgt about it a bit more.

    • CommentRowNumber6.
    • CommentAuthorDavid_Corfield
    • CommentTimeDec 3rd 2014

    Does this help with Gabriel’s question about whether Cartan geometry fits with the simple idea of gluing together model spaces? I see in Def 2.3 the gluing, but it’s followed by conditions.

    Would it be necessary to modify what I had from your claim from here on those slides in Paris?

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeDec 3rd 2014

    A Cartan connection, being a connection on a space and not just a space, is

    a) first of all a space XX that is locally glued from G/HG/H;

    b) second a GG-principal connection on XX equipped with a reduction to HH such that this reduction matches the local G/HG/H-geometry.

    My claim that you link to refers to a), and I think there is nothing that needs correction. In that discussion we were talking about gluing spaces, and a Cartan connection in particular involves gluing spaces form cosets G/HG/H. But Cartan geometry is a bit more, namely also compatible differential data on such a space.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeDec 3rd 2014
    • (edited Dec 14th 2014)

    I should tweak the diagram in the entry a bit more to make clearer how the universal lift really arises, since the diagram currently makes it look like we are using that the connection vanishes on the cover, while of course we are using only that the underlying bundle is trivial on the cover.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeDec 3rd 2014

    I have started to make some quick informal notes on what I am really after here, related to globalizing higher super pp-brane WZW models over sugra spacetimes via higher Cartan connections. This is mostly just to clear up my own thouhgts, here is a pdf

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeDec 15th 2014

    That stronger version of Cartan connection where one requires the manifold to have a cover by G/HG/Hs is something that one may consider also without connection data around. This must have a standard name in the literature, but I am not sure right now which one:

    namely given a GG-principal bundle on a manifold XX equpped with reduction along HGH \to G, then one may ask for a trivializing cover {U iX}\{U_i \to X\} such that the canonically induced maps U iG/HU_i \to G/H are equivalences.

    What, if any, would be a traditional name for this concept?

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeDec 15th 2014

    I have thought a bit more about the synthetic formalization of Cartan connections. My previous formalization was not accurate enough to the traditional definition. Now I have improved on it. I’d dare say now I got it right, but let’s see.

    First I have added this remark on the role of first-order infinitesimal disks in the formulation.

    Then I adapted the synthetic definition accordingly.

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeDec 16th 2014
    • (edited Dec 16th 2014)

    I have expanded the entry a bit more:

    • added a decent (I hope) Idea section;

    • started a “History”-section (which certainly could be further expanded);

    • added after the central definition a remark that says what this comes down to in the Cech cocycle incarnation and in the Ehresmann incarnation of principal connections and added pointers to the literature for these;

    • added some more references.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeMar 2nd 2024

    added pointer to:

    diff, v41, current

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeMar 2nd 2024

    added pointer to:

    diff, v41, current