Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMike Shulman
    • CommentTimeNov 4th 2009

    Created Ho(Cat), mainly as a place to put a counterexample showing that it doesn't have pullbacks. If anyone has a simpler one, please contribute it.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeNov 4th 2009
    • (edited Nov 4th 2009)
    Thanks.

    I would just ask that we specify the first sentence a bit further. You are thinking of the (how is it called?) "trivial homotopical structure" (weak equivalences are precisely the isos) as opposed to some other model structure. We should say that explicitly, because there are good reasons to imagine something different when seeing the symbols Ho(Cat).
    • CommentRowNumber3.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 4th 2009

    What are your desiderata for such counterexamples? For example, the category of nonempty finite sets doesn't admit all pullbacks. Nor does the category of smooth manifolds.

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeNov 4th 2009

    @Urs: No, the weak equivalences are the equivalences of categories.

    @Todd: I meant a counterexample to the existence of pullbacks in Ho(Cat) specifically. (I had a reason to want to show someone a counterexample like that, so I thought I might as well record it in case anyone else wanted it.) I know there are lots of other categories that don't have pullbacks!

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeNov 4th 2009
    • (edited Nov 4th 2009)
    oh, sorry, I didn't read correctly. I was in a haste
    • CommentRowNumber6.
    • CommentAuthorZhen Lin
    • CommentTimeAug 29th 2013

    The article states without citation that

    Any Ho(Cat)Ho(Cat)-category which is equivalent, as a Ho(Cat)Ho(Cat)-category, to a bicategory, is itself in fact a bicategory.

    but is this really so trivial?

    More precisely, let 𝒞\mathcal{C} be a Ho(Cat)Ho(Cat)-enriched category, let 𝔇\mathfrak{D} be a bicategory, let 𝒟\mathcal{D} be the Ho(Cat)Ho(Cat)-enriched category underlying 𝔇\mathfrak{D}, and suppose F:𝒞𝒟F : \mathcal{C} \to \mathcal{D} is a Ho(Cat)Ho(Cat)-enriched equivalence. Then, is there a bicategory \mathfrak{C} whose underlying Ho(Cat)Ho(Cat)-enriched category is not just isomorphic to 𝒞\mathcal{C} but equal? The former is quite easy, since we can just take the hom-categories and coherence data for \mathfrak{C} from those of 𝔇\mathfrak{D}; but the nature of Ho(Cat)Ho(Cat) as a localisation of CatCat means that there is already a canonical choice of hom-categories for \mathfrak{C}. Is it true that coherence data exists for that choice of hom-categories? If so, is this in the literature somewhere?

    • CommentRowNumber7.
    • CommentAuthorDavidRoberts
    • CommentTimeAug 29th 2013

    Sesquicategories rather than bicategories?

    • CommentRowNumber8.
    • CommentAuthorMike Shulman
    • CommentTimeAug 29th 2013

    I don’t know that it’s in the literature in exactly that form. However, it’s a general fact that any sufficiently flexible 2-categorical structure can be transported across equivalences of categories. More precisely, if TT is a 2-monad or pseudomonad, AA is a pseudo TT-algebra, and BAB\simeq A, then BB inherits a pseudo TT-algebra structure. Apply that to the 2-monad on Cat-graphs whose algebras are 2-categories and whose pseudoalgebras are (unbiased) bicategories, and you get a bicategory whose hom-categories are exactly those of 𝒞\mathcal{C}. Then the fact that FF is a Ho(Cat)-equivalence, rather than just a Cat-graph-equivalence, implies that the underlying Ho(Cat)-category of this bicategory is 𝒞\mathcal{C}.

    • CommentRowNumber9.
    • CommentAuthorZhen Lin
    • CommentTimeAug 29th 2013

    Wonderful, thanks! It will take some time for me to understand the details but an affirmative answer is a good start.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeJul 6th 2018

    touched the formatting of this ancient entry, and cross-linked with Ho(CombModCat). There is some old query-box-discussion sitting here, which would deserve to be dealt with

    diff, v11, current

    • CommentRowNumber11.
    • CommentAuthorMike Shulman
    • CommentTimeNov 22nd 2019

    Added link to MO answer by Kevin Carlson giving a Ho(Cat)Ho(Cat)-category that does not arise from any bicategory.

    diff, v12, current

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeOct 3rd 2021

    moving the following old query box discussion out of the entry to here:


    +–{: .query} David Roberts: I would think that τ 1(C)\tau_1(C) for a strict 2-category is the underlying 1-category. What is described here could be called the Poincaré category (I think that Benabou’s monograph on bicategories has this term). Maybe terminology as developed in the meantime, though.

    Mike Shulman: Well, the uses of “truncation” I’ve seen always involves quotienting by equivalences, rather than discarding them. Discarding them only even makes sense in the strict situation (a bicategory has no underlying 1-category) and is an evil (and not often very useful) thing to do, so it doesn’t seem to me worth giving an important name to. “Poincare category” may also be a name for the same thing, but I prefer “truncation” as more evocative.

    Beppe Metere: If I remember well, Benabou introduces two different constructions related to this discussion: the Poincarè category of a bicategory, where the arrows are connected components of 1-cells, and the classifying category, where the arrows are iso classes of 1-cells. Of course, these two categories coincide when the bicategory is locally groupoidal. =–


    diff, v13, current