Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 11th 2011
    • (edited Nov 11th 2011)

    After contributing to the article on parallelogram identity, I added to isometry and created Mazur-Ulam theorem. The easy proof added at isometry, that shows an isometry EFE \to F between normed vector spaces is affine if FF is strictly convex, might lead one to suspect that the proof under parallelogram identity was overkill, but I think that’s an illusion. Ultimately, I believe the parallelogram identity is secretly an expression of the perfect ’roundness’ of spheres, connected with the fact observed by Tom Leinster recently at the Café that the group of isometries for the l 2l_2 norm is a continuum, whereas for other pp in the range 1<p<1 \lt p \lt \infty, you get just a finite reflection group (this is for the finite-dimensional case, but there’s an analogue in the infinite-dimensional case as well).

    The Mazur-Ulam theorem removes the strict convexity hypothesis, but adds the hypothesis that the isometry is surjective. The conclusion is generally false if this hypothesis is omitted.