Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeFeb 29th 2012
    • (edited Feb 29th 2012)

    I noticed some inconsistencies in the section outline at algebraic theory, that must have come from different people editing different pieces and mixing up some global entry structure.

    I have briefly tried to reinstantiate consistent order. But the entry could probably do with somebody looking over in its entirety with an editor-hat on.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeAug 8th 2013
    • (edited Aug 8th 2013)

    at Relation to monads I found that a link to the keyword “finitary monad” had been missing. So I added it briefly, at the end of the first paragraph.

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeSep 6th 2019

    I added this recent work

    looking to unify

    several variants of universal algebra, such as theories of symmetric operads, non-symmetric operads, generalised operads, PROPs, PROs, and monads.

    diff, v63, current

    • CommentRowNumber4.
    • CommentAuthorDmitri Pavlov
    • CommentTimeDec 1st 2020
    • (edited Dec 1st 2020)

    The current definition says

    A Lawvere theory or algebraic theory is a locally small category CC with small products that is equipped with an object xx such that the (unique-up-to-isomorphism) product-preserving functor i:Set op→C:[1]↦xi: Set^{op} \to C: [1] \mapsto x is essentially surjective.

    The modern definition in the Adamek–Rosický–Vitale book is that an algebraic theory is a small category with finite products, whereas a Lawvere theory is an algebraic theory T together with a functor S*→T that preserves finite products and induces a bijection on objects, where S is a set and S* denotes the category whose objects are finite words in S and morphisms s_0…s_{a−1}→t_0…t_{b−1} are maps f:{0,…,b−1}→{0,…,a−1} such that s_f(j) = t_j for all j.

    Should the article be adjusted accordingly?

    • CommentRowNumber5.
    • CommentAuthorTodd_Trimble
    • CommentTimeDec 18th 2020

    (Sorry, I’ve been away for a while.) Yeah, maybe so, but while writing large chunks of the article, I had wanted to consider the doctrine of categories with small products, and the obvious analogue of Lawvere theory for this situation. I think earlier in the article I called that an infinitary Lawvere theory, and then I probably got tired of writing “infinitary”.

    Clearly the notion of infinitary Lawvere theory, and its relation to the concept of monad on SetSet, is an important one. So, if there are no other terminology clashes, I propose that I could insert “infinitary” everywhere, or is there a more elegant way of handling this? Besides the axis of arities, there’s also the axis of sortedness, but “infinitary SS-sorted” everywhere gets to be a mouthful.

    • CommentRowNumber6.
    • CommentAuthorDmitri Pavlov
    • CommentTimeDec 18th 2020

    The current article makes “Lawvere theory” synonymous with “algebraic theory”. But the original definition by Lawvere is that of a single-sorted algebraic theory.

    The Adamek–Rosický–Vitale book makes a clear distinction between the two: an algebraic theory is just a small category with finite products, and they develop much of the abstract theory in this generality.

    When they need sorts, they talk specifically about S-sorted algebraic theories.

    (As far as I can see, they do not directly use “Lawvere theory”, possibly because of the ambiguity identified above.)

    It appears that this book is now a more-or-less standard reference on this topic (by virtue of being the only book-length exposition), so it would make sense to align the terminology with it.

    • CommentRowNumber7.
    • CommentAuthorTodd_Trimble
    • CommentTimeDec 18th 2020

    I’m aware of this. (And aware of it at the time I was writing this, although I was “playing Humpty Dumpty”.) The question is: how would you like to change the terms?

    The article was written to take into account not just finite products, but infinite products as well. So “infinitary SS-sorted algebraic theory” throughout? Something less verbose?

    • CommentRowNumber8.
    • CommentAuthorvarkor
    • CommentTimeDec 18th 2020

    In my experience, “algebraic theory” is very overloaded (as Lawvere theories, cartesian categories, or equational presentations), and my suggestion would be to avoid using the term and instead disambiguate (e.g. “one-sorted algebraic theory” or “Lawvere theory”). “Infinitary S-sorted algebraic theory” is quite long, but it’s very clear.

    • CommentRowNumber9.
    • CommentAuthorDmitri Pavlov
    • CommentTimeDec 19th 2020

    Algebraic theories defined using finite products have rather different properties from algebraic theories defined using infinite products.

    For instance, do any theorems about algebraic theories (with finite products) that involved sifted colimits have analogs for infinite products?

    If not, I’d suggest to refer to the infinite-product version as “infinitary algebraic theory” and reserve “algebraic theory” for the finite-product case.

    • CommentRowNumber10.
    • CommentAuthorJohn Baez
    • CommentTimeJul 18th 2022

    Added the example of R-modules for a commutative ring R.

    diff, v67, current

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeNov 3rd 2022
    • (edited Nov 3rd 2022)

    added pointer to:

    diff, v68, current

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeJan 26th 2023

    added pointer to:

    diff, v69, current

    • CommentRowNumber13.
    • CommentAuthoranuyts
    • CommentTimeFeb 14th 2023

    Cite KEML-diagrams

    diff, v70, current