Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMay 16th 2012
    • (edited May 16th 2012)

    I have added to algebra for an endofunctor a remark on the relation to algebras over free monads. While I think that’s pretty obvious, I notice that a) recently somebody has blogged about that here, b) here it says that it’s not true :-) (but I think it’s not meant to be read that way).

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeMay 16th 2012
    • (edited May 16th 2012)

    The existence of free monads depends on a category in question doesn’t it ? There are also algebras over nonunital monads for which there are important applications. While I am happy you added this content I am unhappy with the statement that the algebra over an endofunctor is less natural notion than an algebra over a monad. It is like saying that a semigroup (nonunital monoid) is less natural notion than a group. Group has more structure and we like it more, but it is really not a defendable statement.

    • CommentRowNumber3.
    • CommentAuthorTobyBartels
    • CommentTimeMay 16th 2012

    I agree with Zoran. One might as well say (more precisely than Zoran’s analogy) that the concept of a function A×BBA \times B \to B is odd, since the more natural notion is the action of the free monoid A *A^* on the set BB. Monoid actions are pretty nice (although some people would prefer to think of the algebra [A *]\mathbb{C}[A^*] acting on the vector space B\mathbb{C}^{B}, even with the need to specify extra properties in that case), but simple functions are nice too.

    • CommentRowNumber4.
    • CommentAuthorTobyBartels
    • CommentTimeMay 16th 2012

    I’ve made edits reflecting this.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeMay 16th 2012

    Looks good, Thanks!

    • CommentRowNumber6.
    • CommentAuthorMike Shulman
    • CommentTimeMay 16th 2012

    While one can argue endlessly about what is “natural”, I think Urs’ point was more that to an arbitrary mathematician (especially one who knows some category theory), the notion of algebra over a monad may be more familiar than that of an algebra over an endofunctor, and so it may be comforting to know that the one is a special case of the other. I edited the page trying to make this meaning more apparent.

    There is also some potential for confusion about the various meanings of the term “free monad”, so I have added some clarification there too.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeMay 16th 2012
    • (edited May 16th 2012)

    Maybe to clarify: I came from the point of view that I looked at where these things arise in contexts that are not already intended to be about inductive definitions. Where might the mathematician who is not actively looking for inductive types be secretly using them? That generic mathematician seems to be very unlikely to consider algebras over endofunctors, or algebras over free monads, whereas he is more likely to be considering algebras over non-free monads. That may be because he is only familiar with the latter, but then: that may not be without reason.

    I think your comment, Mike, that algebras over endofunctors are really to be thought of as truncated version of \infty-algebras over \infty-monads very much strengthens this intuition.

    • CommentRowNumber8.
    • CommentAuthorTobyBartels
    • CommentTimeMay 17th 2012

    I like what you did, Mike. But I still don’t understand why a category theorist would find monad algebras more natural than endofunctor algebras. More familiar, sure; that’s sociological. But what could be more natural than an endofunctor algebra?

    • CommentRowNumber9.
    • CommentAuthorMike Shulman
    • CommentTimeMay 17th 2012

    To some people, “natural” implies in particular “naturally occurring”. Monad algebras clearly occur all over the place in mathematics. Endofunctor algebras could be argued to occur in many places (anywhere that inductive definitions do), but are rarely made explicit; thus monad algebras may seem to occur more commonly than endofunctor algebras.

    • CommentRowNumber10.
    • CommentAuthorzskoda
    • CommentTimeMay 17th 2012
    • (edited May 17th 2012)

    The same with groups versus semigroups, Mike, especially fo rmainstream mathematicians and physicists.

    If one looks at nonunital monads (what is generality in between), modules (you say algebras, but I prefer geometrical language) over nonunital graded monads correspond to (a generalization) of qcoh sheaves on projective cones of graded rings as appearing in algebraic geometry. Saying that projective geometry is less natural than affine is quite an offense for an algebraic geometer.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeMay 17th 2012

    I guess we cannot settle how we all feel about this. I would just like to appeal to everyone to try to see nnLab entries in context. For instance we still have to rectify that the term “initial algebra” currently redirects to the notion over an endofunctor. With all the notions of algebras in common and widespread use – over operads, over monads, over algebraic theories – it seems strange to behave as if the notion over endofunctors were a default notion of algebra.

    • CommentRowNumber12.
    • CommentAuthorzskoda
    • CommentTimeMay 17th 2012

    Who said default notion ? One should say nothing about what is default or natural in such situations when there are several levels of generality (and it is a partially ordered said of generalities, only). Did somebody say that semigroup is a default algebraic structure or that a group is ? I actually never thought somebody would ask for a default algebraic structure or default type of a module.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeMay 17th 2012
    • (edited May 17th 2012)

    Who said default notion ?

    As I said, the words initial algebra still redirect to initial algebra over an endofunctor. That entry used to be titled initial algebra, in fact, until I renamed it.

    I actually never thought somebody would ask for a default algebraic structure or default type of a module.

    I don’t want to dwell on it further, but I think you all know that if you go into some math department and start talking about an algebra, the last thing that people expect you to mean is a morphism out of the image of a random endofunctor.

    But enough of that, let’s turn to something more constructive now!

    • CommentRowNumber14.
    • CommentAuthorTobyBartels
    • CommentTimeMay 17th 2012
    • (edited May 17th 2012)

    The justification for redirecting initial algebra to initial algebra of an endofunctor is (or could be) that this is the only case where people make a big deal out of initial algebras. The initial unital (possibly also associative, commutative) algebra over a field (or even commutative rig) KK is KK itself, so people just call it that. The initial non-unital (possibly also associative, commutative) algebra over KK is 𝟘={0}\mathbb{0} = \{0\}, so people just call it that. These are by far the most common uses of ‘algebra’ in my experience, but other uses also have fairly trivial notions of the initial algebra. Only for algebras over an endofunctor (as far as I know) is the initial algebra particularly interesting, such that one wants to refer to it as such.

    Compare Wikipedia.

    But if there other cases where people refer to initial algebras as such, or in any case if the redirection is confusing, then we should make initial algebra into a more general page.

    • CommentRowNumber15.
    • CommentAuthorMike Shulman
    • CommentTimeMay 17th 2012

    @Toby 14: That’s what I was going to say.

    • CommentRowNumber16.
    • CommentAuthorTobyBartels
    • CommentTimeMay 17th 2012

    @Mike #9: Naturally implicitly occurring is still naturally occurring, I would argue even more natural since people didn’t even have to think hard (and make it explicit). I’ll change ‘common and natural’ to ‘familiar’, and that will make me happy.

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeMay 17th 2012
    • (edited May 17th 2012)

    We are still talking past each other, I think.

    Toby writes:

    But if there other cases where people refer to initial algebras as such, or in any case if the redirection is confusing, then we should make initial algebra into a more general page.

    Right, so that’s what I am trying to get at, this has already happened: we have initial algebra of a presentable (infinity,1)-monad.

    I thought what happened was this:

    I asked Mike something like “Isn’t the concept of initial algebra over an endofunctor strange, for instance what happens when we pass with it to \infty-categories?”

    Mike replied something like yes, indeed, there one sees that it is really a shadow of the notion of initial algebra over a presentable \infty-monad.

    To quote from that reply:

    I feel like to a category theorist, at least (I can’t say about type theorists), this point of view implies that restricting yourself to ordinary inductive types — initial algebras for free monads — is a weird and artificial restriction.

    At that point I thought we already agreed: the notion of initial algebra over a free monad regarded not in the context of initial algebras over general monads (and more generally \infty-monads) is “weird and artificial”.

    So what is it we are now disagreeing about? But maybe that’s not so important. Let’s rather move on:

    concerning the question of what examples we have for interesting initial algebras over non-free monads: this is precisely what I set out to understand here: in the context of that discussion on the nnCafé titled “What is homotopy type theory good for?” I wanted next to find naturally but unnoticed occurences of higher inductive types. I started thinking: where might we already be studying initial agebras over monads/\infty-monads without realizing that there is a logical/type theoretical interpretation to what we are doing?

    Mike has given examples of interesting initial algebras over genuine and non-free \infty-monads. But I guess from that that there must also be plenty of non-free 1-monads that have interesting initial algebras. We should look for them!

    • CommentRowNumber18.
    • CommentAuthorMike Shulman
    • CommentTimeMay 17th 2012

    Urs, I basically agree with you. I was agreeing with Toby #14 about why initial algebra currently redirects to initial algebra over an endofunctor; I think I agree with you that now it would be better to make it a disambiguation page.

    @Toby 16: sure.

    • CommentRowNumber19.
    • CommentAuthorTobyBartels
    • CommentTimeMay 18th 2012

    Thanks, Urs, now I understand. It isn’t endofunctor vs monad (and still less endofunctor/monad vs KK-algebra) but endofunctor/monad vs endo-\infty-functor/\infty-monad. Then I think that we agree.

    I’ll create a disambiguating initial algebra now if I can; but I may be interrupted soon, so if nothing happens within half an hour, then somebody else could make it instead.

    • CommentRowNumber20.
    • CommentAuthorTobyBartels
    • CommentTimeMay 18th 2012

    Done.

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeMay 18th 2012

    Okay, thanks!

    But is it clear that there are no interesting initial algebras for non-free 1-monads? Why?

    • CommentRowNumber22.
    • CommentAuthorMike Shulman
    • CommentTimeMay 18th 2012

    There are! Every free algebra T(A)T(A) for a nice 1-monad TT on a nice 1-category is an initial algebra for some other 1-monad, typically not free (it is the monad-coproduct of TT with the algebraically-free monad on the constant endofunctor at AA). Surely free algebras for 1-monads are interesting.

    • CommentRowNumber23.
    • CommentAuthorTobyBartels
    • CommentTimeMay 19th 2012

    I’m sure that they’re interesting, just “less common and natural”. (-_^)

    • CommentRowNumber24.
    • CommentAuthorMike Shulman
    • CommentTimeMay 20th 2012

    than what?

    • CommentRowNumber25.
    • CommentAuthorTobyBartels
    • CommentTimeMay 20th 2012

    Initial algebras on non-free 11-monads are also interesting, but they’re less familiar than initial algebras on algebraically free 11-monads, aka initial algebras on endo-11-functors.

    • CommentRowNumber26.
    • CommentAuthorUrs
    • CommentTimeMay 20th 2012
    • (edited May 20th 2012)

    Maybe secretly they are familiar, but have not been identified as such? Let’s try to identity some!

    Say we have a locally connected topos. What’s the initial algebra over the induced monad on the topos?

    • CommentRowNumber27.
    • CommentAuthorMike Shulman
    • CommentTimeMay 21st 2012

    Personally, I think free abelian groups are plenty familiar to many mathematicians. Probably more familiar than abstract W-types.

    • CommentRowNumber28.
    • CommentAuthorTobyBartels
    • CommentTimeMay 21st 2012
    • (edited May 21st 2012)

    As initial algebras of monads, these aren’t familiar by the standard of familiarity that you applied in #9.

    • CommentRowNumber29.
    • CommentAuthorUrs
    • CommentTimeMay 21st 2012

    Toby,

    not sure what the discussion is still about. Maybe to clarify:

    you are absolutely right that traditionally the most familiar initial algebras of monads are those of free monads.

    But while true, that need not stop us from going beyond! Certainly not once we have realized that traditional thinking here is subject to “weird and articifical restrictions”! :-)

    • CommentRowNumber30.
    • CommentAuthorTobyBartels
    • CommentTimeMay 21st 2012

    My comment in #23 was facetious, whence the winking smile emoticon. To disrespect initial algebras of monads because they are less traditionally familiar than initial algebras of endofunctors would be silly … as silly as disrespecting algebras of endofunctors because they are less traditionally familiar than algebras of monads. That’s the joke; at least, I found it funny.

    • CommentRowNumber31.
    • CommentAuthorUrs
    • CommentTimeMay 21st 2012

    Okay, I was reacting to the latest #28, not to #23. It seemed to me that in #28 you were still arguing against something. But if not, then just ignore my previous comment!

    • CommentRowNumber32.
    • CommentAuthorMike Shulman
    • CommentTimeMay 21st 2012

    Okay, I think this discussion has gone on long enough. (-:

    • CommentRowNumber33.
    • CommentAuthorTobyBartels
    • CommentTimeMay 21st 2012

    We could still find interesting examples of initial algebras of non-free 11-monads. Unfortunately, the examples of monads that I mostly know are those cooked up to give familiar objects as their algebras, and the initial algebras there tend to be fairly vacuous. So I only know one good example (really a parametrised infinitude of examples): #22.

    • CommentRowNumber34.
    • CommentAuthorMike Shulman
    • CommentTimeMay 21st 2012

    Well, since the initial algebra of a 1-monad is also a free algebra of that monad (free on the initial object of the base category), I think #22 encompasses all examples. (-:

    • CommentRowNumber35.
    • CommentAuthorMike Shulman
    • CommentTimeMay 21st 2012

    On the other hand, one does occasionally find monads that are “cooked up” as you describe in #33 but whose initial algebras are highly non-vacuous. For instance, the category of elementary toposes is monadic over categories, or over graphs, but its initial algebra — the free topos — is highly nontrivial (it knows all about higher-order logic!).

    • CommentRowNumber36.
    • CommentAuthorAlexisHazell
    • CommentTimeJul 29th 2018

    I’ve added a redirect from F-algebra, since I was surprised to not find such an entry already extant, and didn’t immediately think to look at the entry algebra for an endofunctor.

    I’ve also added a comment about noting initial algebras for endofunctors’ relationship to inductive types.

    If all this is okay, I’d like to make analogous updates re. F-coalgebra and coalgebra over an endofunctor.

    diff, v24, current

    • CommentRowNumber37.
    • CommentAuthorDavid_Corfield
    • CommentTimeJul 30th 2018

    That sounds reasonable to me. We also have the page initial algebra of an endofunctor.

    As for the ’co-’ case, terminal coalgebra for an endofunctor comments on coinductive types.

    I guess redirects are needed for the range of prepositions used: of, for and over

    • CommentRowNumber38.
    • CommentAuthorMike Shulman
    • CommentTimeJul 30th 2018

    Well, the problem with “F-algebra” is that nowhere is it decreed that an object called FF must be an endofunctor. But I suppose F is used more often for endofunctors than for other things that have algebras, like monads and rings and theories.

    • CommentRowNumber39.
    • CommentAuthorAlexisHazell
    • CommentTimeAug 5th 2018

    Hmm. Given Mike’s comment, I’m wondering if it might be better to create a new page for ’F-algebra’. (Particularly given that a search for ’F-algebra’ doesn’t show that ’F-algebra’ is a redirect to ’algebra for an endofunctor’, so that if one is looking for a definition of an F-algebra, the search results don’t make it obvious which entr(y|ies) contains such a definition. Perhaps if a search is for a term that has a redirect, that redirect should be noted in the search results?)

    • CommentRowNumber40.
    • CommentAuthorMike Shulman
    • CommentTimeAug 5th 2018

    My point is that there is no definition of “an F-algebra” until you know the type of F, so it doesn’t make sense as a thing to search for.

    • CommentRowNumber41.
    • CommentAuthorAlexisHazell
    • CommentTimeAug 5th 2018

    Okay, sorry for my misunderstanding.

    Here’s the context of why I’ve been looking at this: in reading discussions about Haskell, I’ve encountered people talking using ’F-algebra’ as a category-theoretic concept. My first thought was to come to the nLab for an explanation of this concept. i did a search, and was surprised to find no specific entry for ’F-algebra’ in the search results; and as I alluded to in an earlier comment, not knowing what an F-algebra is, I didn’t know which of the entries listed in the search results I should look at for further information. I ended up doing a search on Wikipedia, and found the F-algebra entry. Now having a general sense about F-algebras, I ended up at the nLab ’algebra for an endofunctor’ page, and thought it would be helpful for other people in my situation to be directed to that page.

    If people who want to know about F-algebras should only be directed to the ’algebra for an endofunctor’ page, then I certainly think the suggestion I made in #39, about search result listings, should be implemented at some point. Having said that, I’m not sure I understand why having a page for ’F-algebra’ is substantially different from having a page for (say) (n,r)-category - in both cases, it seems to me we’re talking about a ’type’ that needs to be ’instantiated’. Is this incorrect?

    • CommentRowNumber42.
    • CommentAuthorRichard Williamson
    • CommentTimeAug 5th 2018
    • (edited Aug 5th 2018)

    Hi Alexis, I missed your suggestion about searching first time around. At first glance, it sounds good to me. Please add it to the Technical TODO list (nlabmeta).

    • CommentRowNumber43.
    • CommentAuthorAlexisHazell
    • CommentTimeAug 5th 2018

    @Richard: Done - thanks. :-)

    • CommentRowNumber44.
    • CommentAuthorMike Shulman
    • CommentTimeAug 5th 2018

    It would certainly be nice to include redirects in search results, I’ve wished for that before. However, I do note that https://www.google.com/search?q=site:ncatlab.org+F-algebra gets you to algebra for an endofunctor as the top hit, and this is the search that’s done by the green “Search the nLab” box on the HomePage. Possibly we should consider putting the google search box at the top of every page instead of or in addition to the built-in instiki one.

    You’re right that there is no qualitative difference between nn-category and FF-algebra; both are names that contain a variable. In practice, however, when we write nn-category there is practically no potential for confusion: the only other name of the form “?-category”, with ? a variable, that I can think of is VV-category for an enriched category, and the chances of someone using lowercase nn to denote a monoidal category are slim to none. Even given that, I would have preferred to name the page n-category as something not including a variable, were it not for the fact that there is really no other option available.

    With algebras, in contrast, there are oodles of different kinds of algebras: in addition to algebras for endofunctors we have algebras for monads, algebras for pointed endofunctors, algebras for rings and fields, algebras for algebraic theories, and probably others; all of which are commonly denoted by “?-algebra”, and in many cases the ? might quite reasonably be denoted by the letter FF (particularly, for instance, a pointed endofunctor or a field). Moreover, algebra for an endofunctor is a quite reasonable and unambiguous alternative page name.

  1. Re #43: Thanks Alexis!

    • CommentRowNumber46.
    • CommentAuthorAlexisHazell
    • CommentTimeAug 17th 2018

    @Mike:

    Ah, now I get what you’re saying - thanks for taking the time to elaborate!

    • CommentRowNumber47.
    • CommentAuthorMike Shulman
    • CommentTimeDec 30th 2018

    Added a mention of pointed algebras for pointed endofunctors. Perhaps those should have their own page, but at the moment I don’t have much to say about them other than “they’re analogous to the unpointed case”.

    diff, v25, current

    • CommentRowNumber48.
    • CommentAuthorGuest
    • CommentTimeJan 8th 2020

    In the referenced Maciej Piróg’s blog post, there is a construction of μ\mu just before the Eilenberg-Moore Algebra section. The construction seems problematic to me. In particular, Σ *Σ *XΣΣ *Σ *X+Σ *X\Sigma^*\Sigma^* X\cong \Sigma\Sigma^*\Sigma^* X + \Sigma^*X, and [α,1]:ΣΣ *X+Σ *XΣ *X[\alpha, 1]\colon \Sigma\Sigma^*X+\Sigma^*X\to \Sigma^* X does not seem to type-check there. If I understand the matter correctly, the multiplication μ\mu should be given by initiality, probably not expressible by α:ΣΣ *XΣ *X\alpha\colon \Sigma\Sigma^* X\to \Sigma^*X without further assumption.

    If the above is correct, maybe it is better to have a note next to the reference to remind the reader.

    – Anonymous Coward

    • CommentRowNumber49.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 8th 2020

    I think you’re right that the author slightly misspoke, or elided over something you’re pointing out, but to me what he was trying to say is clear enough.

    So Σ *Σ *X\Sigma^\ast \Sigma^\ast X is the initial algebra for the endofunctor YΣY+Σ *XY \mapsto \Sigma Y + \Sigma^\ast X. Meanwhile there is an algebra structure on Σ *X\Sigma^\ast X for that endofunctor, i.e., a map ΣΣ *X+Σ *XΣ *X\Sigma \Sigma^\ast X + \Sigma^\ast X \to \Sigma^\ast X, and that’s given by [α,Id][\alpha, Id]. Thus by initiality, we have a map Σ *Σ *XΣ *X\Sigma^\ast \Sigma^\ast X \to \Sigma^\ast X that is induced by the algebra structure [α,Id][\alpha, Id]. That’s what he meant to say, no?

    Another thing to point out is that he’s overloading the notation μ\mu. The first time μ\mu appears, I guess he wants μY.Σ(Y)+X\mu Y.\Sigma(Y) + X to denote the initial algebra of the endofunctor λY.ΣY+X\lambda Y. \Sigma Y + X. (I don’t recall seeing that notational convention before; is it well known?) On the other hand, μ\mu denotes the monad multiplication.

    One could try writing him about these issues, but let me think about a graceful way of handling it at the nLab.

    • CommentRowNumber50.
    • CommentAuthorvarkor
    • CommentTimeJan 8th 2020

    (I don’t recall seeing that notational convention before; is it well known?)

    μ\mu is often used in computer science to denote least fixed points (with ν\nu being used for greatest fixed points), for example in the modal μ-calculus, and by extension initial (and final co)algebras, for instance in Algebras, Coalgebras, Monads and Comonads.

    • CommentRowNumber51.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 8th 2020

    Added some text in response to the preceding comments.

    diff, v26, current

    • CommentRowNumber52.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 8th 2020

    Thanks for that information, varkor.

    • CommentRowNumber53.
    • CommentAuthorGuest
    • CommentTimeJan 8th 2020

    @Todd_Trimble, thanks for clarifying. I was slow in filling in the details, and did not realize (forgot) that (|f|)(\vert f \vert) denotes the unique homomorphism to the algebra (X,f)(X, f) among some researchers 1 2. I have seen the notation before, so the misunderstanding is my own fault.


    1. Wikipedia 

    2. Bird and Moore, The algebra of programming, in Deductive Program Design. google book preview 

    • CommentRowNumber54.
    • CommentAuthorSam Staton
    • CommentTimeJul 16th 2020

    added link to algebraically compact category

    diff, v27, current

    • CommentRowNumber55.
    • CommentAuthorncfavier
    • CommentTimeJun 4th 2024

    Linked to the 1Lab for the proof that (forgetful functor from F-algebras has left adjoint) implies algebraically-free monad.

    diff, v29, current