Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes science set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTodd_Trimble
    • CommentTimeAug 25th 2012

    Added some examples to allegory, including that of modular lattice as one-object allegory.

    • CommentRowNumber2.
    • CommentAuthorFinnLawler
    • CommentTimeOct 22nd 2012

    Added a section on syntactic allegories to allegory, mostly to record a result about the interpretation of \exists in unitary pre-tabular allegories.

    • CommentRowNumber3.
    • CommentAuthorMike Shulman
    • CommentTimeOct 23rd 2012

    Presumably the syntactic allegory in turn arises by a standard construction from a syntactic hyperdoctrine?

    • CommentRowNumber4.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 23rd 2012

    Re #3: I was thinking the same thing.

    We were discussing allegories and such a couple of months ago. Mike asked a question here which is still basically unanswered. Suffice it to say that of all the various categorical machines for discussing first-order theories (including hyperdoctrines, bicategories of relations, and allegories), allegories seem the least well tied-in to the matrix of higher category theory (or anyway the least well-grokked here at the nLab, if Mike’s question and my lack of response are any indication).

    • CommentRowNumber5.
    • CommentAuthorFinnLawler
    • CommentTimeOct 24th 2012

    Some small edits to allegory. I’ve also added redirects from pre-logos and logos to coherent category and Heyting category respectively.

    Re #3: I would expect so, definitely.

    Re #4: Later in that thread Mike asked

    Could there be analogous theorems like “If a locally posetal 2- (or perhaps F-) category has (some universally characterized objects), then it is an allegory if and only if it is a bicategory of relations” and “The free completion of a locally posetal 2/F-category under (some universally characterized objects) is a bicategory of relations if and only if the original category was an allegory”?

    We do know, though, that a locally posetal 2-category that is a cartesian bicategory is an allegory iff it is a bicategory of relations, don’t we?

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 24th 2012

    We do know, though, that a locally posetal 2-category that is a cartesian bicategory is an allegory iff it is a bicategory of relations, don’t we?

    It’s never occurred to me to wonder until now: is an allegory an extra structure on a locally posetal 2-category, or is it really just a property? In other words, is the dagger structure uniquely determined?

    • CommentRowNumber7.
    • CommentAuthorTobyBartels
    • CommentTimeOct 25th 2012

    I’ve also added redirects from pre-logos and logos to coherent category and Heyting category respectively.

    Are these synonyms? Can you add something to the target pages to say this (or to say whatever is true)?

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2012
    • (edited Oct 25th 2012)

    Yeah, there needs to be some mentioning of XYZ on a page to which XYZ redirects.

    From page 12 of

    • Casten Butz, Peter Johnstone, Classifying toposes for first order theories, BRICS Report Series RS-97-20

    we have the following. Let κ\kappa be a cardinal. Then

    1. A κ\kappa-geometric category is a regular category with unions for κ\kappa-small families of subobjects, stable under pullback.

      Makkai-Reyes called these κ\kappa-logical categories and Freyd-Scedrov called them pre-logoi.

    2. A κ\kappa-Heyting category is a regular category with unions and intersections of κ\kappa-small sets of subobjects and such that pullback of subobjects along any morphism ff has a right adjoint f\forall_f (the universal quantifier).

      In Freyd-Scedrov this is called a logos when κ=ω\kappa = \omega.

    I am now moving this into the relevant entries.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2012
    • (edited Oct 25th 2012)

    By the way, looking again at the entry allegory I find it is missing more of an indication of why we care about allegories. Right in the Idea-section there should be a sentence saying “The theory of allecgories is useful for…” and then probably mention implications for exact completions etc.

    • CommentRowNumber10.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 25th 2012

    why we care about allegories

    I suppose someone could write something, but:

    There doesn’t seem to be overwhelming enthusiasm for them around here in the first place; they are one way of doing categorical relational calculus, yes, but notions like hyperdoctrines or cartesian bicategories also serve that purpose and seem more flexible or adaptable to categorification. We keep asking ourselves: why this selection of axioms (which look ad hoc to some of us)? I personally would like to understand that better before trying to answer why we care.

    You could say, in the manner of a ten-year-old writing up a desultory book report, “the theory of allegories is useful because Freyd and Scedrov (and others) proved a whole bunch of results about them that can now be referred to.” The stuff about regular and exact completions in terms of splitting certain classes of idempotents in bicategories of relations doesn’t particularly need allegories to say it.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2012

    Ah, interesting. I didn’t know this. I kept looking at the page “allegories” and asking myself why I should care.

    But so this is also a useful piece of information. Why not say it in the entry?

    I think such “why-this-definition”-answers are needed also for the general perception of the nnLab. It makes a bad impression to happen upon a page that indulges in definitions without telling the reader what the payoff is supposed to be. It makes the impression that somebody is just playing around with definitions instead of doing fruitful mathematics.

    Right this moment I cannot, but if you prefer I can later try to distill some remark into the entry from what you just said.

    • CommentRowNumber12.
    • CommentAuthorMike Shulman
    • CommentTimeOct 25th 2012

    There’s one important way in which the notion of bicategory of relations is less ’flexible’ than that of allegory: a bicategory of relations must have a product. If you want to perform exact completion by adding kleisli objects (i.e. splitting some idempotents, in the locally posetal case) and your input data doesn’t have products of objects yet, then allegories may work where bicategories of relations would fail. This was my situation in my exact completions paper, where after a long time of disparaging allegories I found myself forced to use them!

    I like the idea of seeing an allegory as ’a (1,2)-category that would be a bicategory of relations if it had products’. I guess Finn is right that by ’having products’ here we could mean ’being a cartesian bicategory’. Even better would be if we could characterize the ’cartesian’ (1,2)-categories with some universal property, such as being cartesian objects in some 2-category. Then we could ask the other half of my suggestion: is the free completion of an allegory under ’products’ a bicategory of relations, and conversely?

    • CommentRowNumber13.
    • CommentAuthorMike Shulman
    • CommentTimeOct 25th 2012

    @Todd #6: if the allegory is tabular, or even ’weakly k-tabular’, then the dagger-structure is uniquely determined, but in general I can’t think of any reason why it would be.

    • CommentRowNumber14.
    • CommentAuthorMike Shulman
    • CommentTimeOct 25th 2012

    @Urs #8: Also, I called those k-geometric categories k-ary regular categories, wanting to emphasize that k is the ’arity’ and not, say, the category dimension.

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2012

    Mike,

    whatever these things are called, the entries need to say it. It’s not sufficient that you tell me here or somewhere out there is some paper that says it. There should be a remark at geometric category saying what you just said, then.

    • CommentRowNumber16.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 25th 2012

    I wrote up something at allegory as per Urs’s suggestion. See what you think.

    • CommentRowNumber17.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 25th 2012

    @Mike: I can see it for tabular categories. But I don’t know what “weakly k-tabular” means (and I’m too lazy or tired now to attempt a guess).

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2012
    • (edited Oct 25th 2012)

    I wrote up something at allegory as per Urs’s suggestion. See what you think.

    Thanks, Todd! Very nice, yes, that’s the kind of comment that I was hoping for.

    By the way, since it keeps being mentioned, can we say something contentful at relational calculus, at least such as to give a broad orientation?

    • CommentRowNumber19.
    • CommentAuthorFinnLawler
    • CommentTimeOct 25th 2012

    Re Toby’s #7, Urs’s #8: Yes, sorry, I should have said something about (pre-)logoses on those pages. I’ve added a reference to k-ary regular category and a link to Mike’s paper at geometric category.

    Re Mike’s #12: I’m still working on this, so I can’t give you a proof quite yet, but I’m pretty sure that a cartesian bicategory will be the same thing as a ’cartesian equipment’ that is ’functionally complete’/chordate, a cartesian equipment being a cartesian object in the 2-category of equipments, pseudo-functors and lax transformations that are valued in, and pseudo-natural with respect to, tight maps. That is certainly suggested by the material (due to Todd, I think) at cartesian bicategory.

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2012

    Thanks, Finn!

    • CommentRowNumber21.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 25th 2012

    Re relational calculus, I’d be tempted to try to recall some history, or at least a mathematician’s history, which would involve names like Peirce, Schröder, Tarski, … In the early days there were lots of analogies made between relational calculus and linear algebra, explainable by the fact that RelRel is CMonCMon-enriched and self-dual. Trouble is that I don’t know the history, really.

    • CommentRowNumber22.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2012

    I (only) now realize that I pretty much missed that story about “familial regularity and exactness”.

    The entries on all the notions unified by this need to point back to that unification. So I have created now a floating TOC and am including it into all the relevant entries:

    Please check out that TOC and edit/modify as need be.

    • CommentRowNumber23.
    • CommentAuthorMike Shulman
    • CommentTimeOct 26th 2012

    Very quick reply: I’m sorry (and surprised) that I didn’t add enough links. I certainly intended to! But there were a lot of pages that needed editing at once, and I guess I missed a bunch. Thanks for the fixes.

    • CommentRowNumber24.
    • CommentAuthorMike Shulman
    • CommentTimeOct 26th 2012

    @Finn 19 : excellent! I look forward to it.

    @Todd 17: It’s in my paper… sorry I don’t have time to write more now, I’m getting up early to go to Montreal tomorrow…

    • CommentRowNumber25.
    • CommentAuthorFinnLawler
    • CommentTimeOct 31st 2012

    There was a small mistake at the end of the proof I put at allegory, so I’ve put a lemma on my personal web here and referred to that instead.

    • CommentRowNumber26.
    • CommentAuthorTodd_Trimble
    • CommentTimeMar 29th 2013

    Here is a basic question about allegories that I don’t know the answer to right away: is “allegory” a property or structure one can put on a locally posetal 2-category BB? The issue is whether there is at most one “opposite” operation () op:hom(a,b)hom(b,a)(-)^{op}: \hom(a, b) \to \hom(b, a) that makes BB an allegory.

    • CommentRowNumber27.
    • CommentAuthorMike Shulman
    • CommentTimeMar 30th 2013

    You probably do know that if B is tabular, or more generally if every morphism is a join of a composite of maps and their inverses, then its allegory structure is unique, since the opposite of a map in an allegory is its adjoint.

    • CommentRowNumber28.
    • CommentAuthorTodd_Trimble
    • CommentTimeMar 30th 2013

    Yeah, I do know that! Strangely, BTW, Freyd-Scedrov define a map in an allegory to be a morphism R:ABR: A \to B such that R op:BAR^{op}: B \to A is its right adjoint, instead of simply as a morphism that possesses a right adjoint (and then proving the right adjoint must be R opR^{op}). Maybe Johnstone proves this in the Elephant; I haven’t checked.

    • CommentRowNumber29.
    • CommentAuthorMike Shulman
    • CommentTimeMar 30th 2013

    Yeah, he does.

    • CommentRowNumber30.
    • CommentAuthorTodd_Trimble
    • CommentTimeMar 30th 2013

    Thanks, Mike! The question of allegories being property-like, while a natural one to ask, is not urgent for me; I just wondered whether you or Finn or someone else happened to know. I can’t tell whether a negative answer would make allegories even more or even less alluring to me, but I suspect “less”.

    For what it’s worth: I can show that a (locally posetal) cartesian bicategory carries at most one allegory structure, and this occurs precisely if it’s a bicategory of relations. Meanwhile, cartesian bicategories are property-like with respect to 2-categories. I think these observations suffice for my immediate purpose.

    • CommentRowNumber31.
    • CommentAuthorEvan Patterson
    • CommentTimeMar 25th 2017

    Hopefully the experts here can help a newbie trying to understand allegories. The current definition of distributive allegory says:

    A distributive allegory is an allegory whose hom-posets have finite joins that are preserved by composition. Thus a distributive allegory is locally a lattice.

    Based on Freyd-Scedrov I wonder whether it should say something like:

    A distributive allegory is an allegory whose hom-posets have finite joins that are preserved by composition and that satisfy the distributivity law. Thus a distributive allegory is locally a distributive lattice.

    Is this a mistake?

    • CommentRowNumber32.
    • CommentAuthorMike Shulman
    • CommentTimeMar 25th 2017

    I think you’re right. I’ve fixed it, mentioning also the weaker notion under the name “union allegory” (which is used in the Elephant).

    • CommentRowNumber33.
    • CommentAuthorTodd_Trimble
    • CommentTimeMar 25th 2017

    This reminds me that there are still some loose ends in the alternative account of power allegories (“original research”). I should get back to that.

    • CommentRowNumber34.
    • CommentAuthorEvan Patterson
    • CommentTimeMar 25th 2017

    Thanks! I didn’t know about the weaker notion of “union allegory.”

  1. Added a reference to Michael Winter, Goguen Categories. Therein the author develops an application to the construction of fuzzy controllers.

  2. Added missing properties. Moreover, I changes “(1,2)-category” to “locally posetal 2-category” because the former is only stated as a notion depending on a notion of \infty-category.

    diff, v33, current

  3. Added proof of distributivity of composition over meets.

    diff, v33, current

  4. Expanded on definition of map, entire morphism, and functional morphism.

    diff, v34, current

  5. Corrected g ofg^o f to gf og f^o in definition of tabulation.

    diff, v35, current

  6. Added another basic property.

    diff, v39, current