Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorbwebster
    • CommentTimeDec 2nd 2009

    Taking the advice that if I write something on the internet, it should be stuck on the n-Lab, I've converted my recent comments in the n-category cafe and some old blog posts into a new page on the relationship between categorification and groupoidification: categorification via groupoid schemes

    • CommentRowNumber2.
    • CommentAuthorGuest
    • CommentTimeDec 2nd 2009
    Comments at categorification via groupoid schemes on terminology and notation for the first paragraph.

    David Roberts
    • CommentRowNumber3.
    • CommentAuthorbwebster
    • CommentTimeDec 2nd 2009

    Ok, I think I've addressed your questions, so I deleted the query box. Thanks, by the way; I'm sure the notation is still ghastly, but somehow the work "nerve" had slipped from my mind, and I didn't know about \rightrightarrows.

    • CommentRowNumber4.
    • CommentAuthorbwebster
    • CommentTimeDec 2nd 2009

    Oh, the one part I was a bit unsure of is the question about a "groupoid of fintie sets" I meant a groupoid whose arrows and morphisms are finite, with no additional structure. Does "a groupoid of finite sets" mean something other than that?

    • CommentRowNumber5.
    • CommentAuthorGuest
    • CommentTimeDec 2nd 2009
    I was thinking it could be interpreted as a groupoid whose objects are finite sets, say those arising as the F_q points of a scheme.

    David Roberts
    • CommentRowNumber6.
    • CommentAuthorGuest
    • CommentTimeDec 2nd 2009
    I changed the first dotpoint to read 'finite groupoid', since that means the same thing as groupoid in FinSet

    David Roberts
    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeDec 2nd 2009

    Thanks for this entry!

    I edited it a bit (made the Theorem environment say "Theorem") and added some further links, for instance to motive.

    One question: you write "the motive of  \mathbb{A}^1 " is pulling up through the projection  X \times \mathbb{A}^1 \to X and then pushing down along it again.

    What is the terminology here: is this operation itself called a motive?

    (All I know about motives comes from a very superficial encounter with Voevodsky's lecture notes.)

    • CommentRowNumber8.
    • CommentAuthorbwebster
    • CommentTimeDec 2nd 2009

    yeah, I decided it would probably be better to call that "multiplication by the motivic integral of $\mathbb{A}^1$."

    • CommentRowNumber9.
    • CommentAuthorzskoda
    • CommentTimeApr 7th 2010
    • (edited Apr 7th 2010)

    As groupoidification appeared today again on the cafe, I have updated links, including the sbseminar links at Hecke algebra. I wish we had also a meaningful entry on Hall algebra but I am running out of time with so many things on the plate and other important deadlines approaching by this weekend.

    We should also understand the general connection between the motivic functions and groupoidification.

    • CommentRowNumber10.
    • CommentAuthorbwebster
    • CommentTimeMay 2nd 2010

    Zoran, I'm not sure I understand what general connection you have in mind. I guess I tend to think of such a connection as factoring through the realization functor from motives to Galois representations, and thus going through well-understood mathematics.