Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorJon Beardsley
    • CommentTimeMay 31st 2013

    The page in the nLab on tangent \infty-category is really awesome. Does anyone here know if this can be extended to higher degree “approximations” or is all the relevant information contained in the tangent category?

    Thanks!

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMay 31st 2013

    The page in the nLab on tangent (infinity,1)-category is really awesome.

    Thanks!

    if this can be extended to higher degree “approximations” or is all the relevant information contained in the tangent category?

    You are probably asking if there is something like a ” jet bundle (,1)(\infty,1)-category”, is that right?

    Hm, I don’t know. Interesting question.

    • CommentRowNumber3.
    • CommentAuthorJon Beardsley
    • CommentTimeMay 31st 2013

    Yeah, that’s precisely what I’m asking!

    I’ve been reading some of Lazard’s old stuff on formal groups and looking at some deformation theory stuff, and it all seems to fit into this much more general framework. If we consider S-modules (where by S I mean the sphere spectrum), to be the tangent category (at S?) to the category of S-algebras, and we recall that at least in algebra this is the same thing as square-zero extensions of S, which is controlled by Hochschild homology, one starts to wonder if there are categories corresponding to “cube-zero” extensions, etc. Or perhaps non-unital S-algebras with higher degrees of nilpotence. Somehow these categories would lose the quality of being non-linear, but perhaps this is related to the Goodwillie calculus stuff as well.

    • CommentRowNumber4.
    • CommentAuthorJon Beardsley
    • CommentTimeJun 2nd 2013

    Perhaps you already knew about this Urs, but this seems to be related to the page:

    http://ncatlab.org/nlab/show/cohesive+%28infinity%2C1%29-topos+–+infinitesimal+cohesion#JetBundleObjects

    though I’d have to find a translator. :)

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2013
    • (edited Jun 3rd 2013)

    Perhaps you already knew about this Urs, but this seems to be related to the page:

    Yes I know about that: I came up with the idea and wrote that page, in particular the section jet bundle objects.

    But this is a formalization of \infty-jet bundles which is a priori different from that via tangent (infinity,1)-categories, which you asked about above.

    Which is not to say that one could not maybe connect the two. Given a cohesive \infty-site 𝒞\mathcal{C}, one could try to use its tangent \infty-category T𝒞 opT \mathcal{C}^{op} as an infinitesimal neighbourhood site and if that is made to work, then inside the resulting differential cohesive oo-topos one has a notion of \infty-jet bundles induced from the original tangent \infty-category.

    That would morally be the \infty-jet version of the original tangency construction. But it is a construction quite a bit remote from a would-be explicit generalization of the construction of the tangent \infty-category itself.

    • CommentRowNumber6.
    • CommentAuthorjcmckeown
    • CommentTimeJun 8th 2013

    At the very least there is a Goodwillie Calculus in various \infty-topoi, which is about higher derivatives. However, the notion of infinitessimal there isn’t a map, but an arbitrarily-connected map (which notion must make sense to have a Goodwillie Calculus…). I’m still trying to learn it myself, so I can’t say much more.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeJun 8th 2013
    • (edited Jun 8th 2013)

    Hm, true, but on the other hand this sort of is subsumed by the original tangent (infinity,1)-catgeory-construction, in the following sense:

    As Jacob Lurie nicely explains at then end of his article, Goodwillie calculus is about approximating the missing functoriality of the stabilization construction on suitable \infty-categories. Now the tangent \infty-category of some suitable \infty-category is the fiberwise stabilization of its codomain fibration. So in some sense at least the tangent \infty-category does accomodate for all Goodwillie derivatives.

    Of course that’s a bit vague. Can you maybe say a bit more precisely what it is that you are actually after?

    • CommentRowNumber8.
    • CommentAuthorJon Beardsley
    • CommentTimeJun 12th 2013
    • (edited Jun 12th 2013)

    So unfortunately, I no nothing about the Goodwillie calculus story. I mean, I know the barest bones of the Goodwillie calculus, but have yet to see anything concrete.

    A lot of this for me came from working with formal varieties, for instance in Lazard’s old stuff on formal groups. He defines a formal variety over AA to be a functor from the category of nilpotent (necessarily non-unital) AA-algebras to pointed sets. There are a lot of different ways to talk about this story I think. My way might be a little outdated. The point is, algebras XX such that X 2=0X^2=0 can be identified with AA-modules. This is the tangent category (to the category of rings at the “point” AA). Functors from the category of square-zero AA-algebras to pointed sets can be thought of as something that is to formal varieties as 2-buds are to formal group laws. Then, algebras XX such that X 3=0X^3=0 are sort of, the next level up. Somehow, when we get our hands dirty and start thinking about these things in terms of formal power series over AA, we basically see that we’re building Taylor series, hence my question’s title.

    Okay, so Lurie, in DAG IV, has this category Ring +Ring^{+} of pairs (A,M)(A,M) where AA is a ring and MM is an AA-module. It maps into Fun(Δ 1,Ring)Fun(\Delta^1,Ring), where (A,M)(A,M) maps to the inclusion morphism, I believe, AAMA\to A\oplus M. And the left adjoint to the map Ring +Fun(Δ 1,Ring)RingRing^+\to Fun(\Delta^1,Ring)\to Ring is the construction of the cotangent complex. Anyway, I feel like there should be some kind of simplicial category Fun(Δ n,C)Fun(Δ 2,C)Fun(Δ 1,C)C\ldots Fun(\Delta^n,C)\to\ldots\to Fun(\Delta^2,C)\to Fun(\Delta^1,C)\to C, and we’re currently only looking at the first level of this thing.

    • CommentRowNumber9.
    • CommentAuthorTim_Porter
    • CommentTimeJun 12th 2013

    Have you looked back at Quillen’s cohomology of comm. algebra papers, and Luc Illusie’s thesis (in SLN about 1973). Going back to that will show some of the basics behind Lurie’s construction. (I think that the old papers a re often a good place to go, although the more recent stuff then needs to be tackled.)