Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories accessible adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-geometry differential-topology digraphs duality education elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity group-theory higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration-theory k-theory lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monad monoidal monoidal-category-theory morphism motives motivic-cohomology newpage nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topological topology topos topos-theory tqft type type-theory universal

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 11th 2013

    At what point in physics does it matter that I consider the groupoid

    Riem(Σ)//Diff(Σ) \mathbf{Riem}(\Sigma)//\mathbf{Diff}(\Sigma)

    rather than the set

    Riem(Σ)/Diff(Σ)? \mathbf{Riem}(\Sigma)/\mathbf{Diff}(\Sigma)?

    At general covariance it says the latter is sufficient

    to perform variational calculus and hence derive the equations of motion of the theory.

    So what does the groupoid add?

    Is there an issue of being able to reconstruct Σ\Sigma in each case?

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeNov 11th 2013
    • (edited Nov 11th 2013)

    Good question. One main answer is:

    passing from homotopy quotients to naive quotients destroys locality in field theory, as in “local field theory

    This is just the main property of stacks translated to moduli stacks of physical fields: if one forgets the (auto-)gauge transformations, then it is impossible, in general, to reconstruct global field configurations from local ones.

    This is a point that needs to be emphasized more. These days in the blogosphere one sees that the meme is spreading among supposedly big-shot theoretical physicists that “gauge invariance is just a redundancy” and that one can happily quotient out gauge equivalence. Notably the work by Arkani-Hamed et al on scattering amplitudes has often been accompanied by such statements.

    This is true only if one sacrifices locality. But these are the two fundamental principles of modern physics:

    1. the gauge principle

    2. the principle of locality.

    The first implies that the world is described by homotopy theory (\infty-groupoids). The second that it is described in fact by geometric homotopy theory (\infty-stacks). Neither should be thrown out of the window if one is after the full picture.

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 11th 2013

    Thanks! So from dcct this is here:

    Another cause is that often the nature of the gauge principle is actively misunderstood: often one sees texts claiming that gauge invariance is just a “redundancy” in the description of a physics, insinuating that one might just as well pass to the set of gauge equivalence classes. And this is not true: passing to gauge equivalence classes leads to violation of the other principle of modern physics, the principle of locality. For reconstructing non-trivial global gauge field configurations (often known as “instantons” in the physics literature) from local data, it is crucial to retain all the information about the gauge equivalences, for it is the way in which these serve to glue local gauge field data to global data that determines the global field content.

    And there’s relevant material in and

    Can we see anything of this reconstructing of non-trivial global gauge field configurations in the baby example I’m working out here, or do we need a more geometric example?

    • CommentRowNumber4.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 11th 2013

    Discussion continues of all these things. It occurred to me to raise the issue of active and passive transformations. Is there a reason why we don’t have anything on this? The Wikipedia entry gives an example where we can see a particular transformation either way.

    • CommentRowNumber5.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 15th 2013

    if one forgets the (auto-)gauge transformations, then it is impossible, in general, to reconstruct global field configurations from local ones.

    Does this mean that if a spacetime Σ\Sigma is the union of two others Σ i,i=1,2\Sigma_i, i = 1,2, then from the

    [Σ i,Fields]//BAut(Σ i) [\Sigma_i, \mathbf{Fields}]//\mathbf{B} Aut(\Sigma_i)

    it is possible to construct

    [Σ,Fields]//BAut(Σ)? [\Sigma, \mathbf{Fields}]//\mathbf{B} Aut(\Sigma)?

    Perhaps some gluing data needs to be added.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeNov 15th 2013

    The spacetime example is a subtle one to discuss this point. Let’s first look at an easier one of fields on spacetime.

    A gauge field theory assigns to subsets UU of Σ\Sigma the groupoid of GG-gauge fields on Σ\Sigma. This assignment is a stack, and the descent property of this stack says precisely that and how the local field assignsments glue together to give the global field assignsments.

    If we 0-truncate this stack by sending each UU to the set of gauge equivalence classes of fields this breaks down.

    • CommentRowNumber7.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 17th 2013

    Back online.

    A gauge field theory assigns to subsets UU of Σ\Sigma the groupoid of GG-gauge fields on Σ\Sigma.

    You mean

    A gauge field theory assigns to subsets UU of Σ\Sigma the groupoid of GG-gauge fields on UU?

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeNov 17th 2013

    Yes, sorry

    • CommentRowNumber9.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 18th 2013

    Ok good, but still it’s going to be difficult in the general covariant case of #5, isn’t it? I could perhaps see that one could stitch together patches to give diffeomorphisms on the whole of spacetime which are ’close to the identity’, in the sense of leaving the submanifolds invariant.