Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeDec 4th 2013
    • (edited Dec 4th 2013)

    created brief entries Wirthmüller context and Grothendieck context, following Peter May’s terminology for the two special cases where four of the Grothendieck six operations specialize to an adjoint triple.

    The main thing I’d like to record is lists of classes of examples that realize either of these contexts. But haven’t gotten around to that yet.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeDec 4th 2013

    added to Grothendieck context pointers to the original articles by Grothendieck, Deligne, Verdier and the more recent nice one by Neeman on f !f^! along proper maps of schemes.

    added to Wirthmüller context a pointer to prop. 3.3.23 Lurie’s, Proper Morphisms, Completions, and the Grothendieck Existence Theorem which discusses the left adjoint f !f_! along suitable morphisms of spaces in E-infinity geometry.

    (Thanks to Joost Nuiten for pointers.)

    What I am after is more of that E E_\infty-geometric (“spectral geometry”) six operations yoga. Can anyone help me with further pointers or insights?

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeDec 4th 2013
    • (edited Dec 4th 2013)

    added discussion of some basic properties to Wirthmüller context, following May’s text (in particular the abstract statement of the Wirthmüller isomorphism) in a new section Properties

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeDec 5th 2013
    • (edited Dec 5th 2013)

    I have expanded a bit more at Wirthmüller context with the intention to make it clearer what depends on which assumption. To that end I say now for an adjoint triple (f !f *f *)(f_! \dashv f^\ast \dashv f_\ast) between closed symmetric monoidal cats

    • pre-Wirthmüller context if f *f^\ast is strong monoidal;

    in addition to May’s

    • Wirthmüller context if f *f^\ast is strong monoidal and strong closed.

    This to better disentangle where the closedness condition appears and what it is equivalent to.

    • CommentRowNumber5.
    • CommentAuthorTodd_Trimble
    • CommentTimeDec 5th 2013

    disentable = disentangle I guess.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeDec 5th 2013

    Yes, thanks, fixed.

    • CommentRowNumber7.
    • CommentAuthorDavid_Corfield
    • CommentTimeDec 5th 2013

    Is there a nice nPOV story on what the six operations are for? Perhaps that’s what’s being asked for in #2. Is E E_\infty-geometric the most general setting?

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeDec 5th 2013
    • (edited Dec 5th 2013)

    Is there a nice nPOV story on what the six operations are for?

    Yes, so that’s the reason for my questions in the other thread.

    Suppose we are in a higher geometric context which pairs some geometry with E E_\infty-geometry (such as smooth E-∞-groupoids).

    Then for XX any geometric object and EE an E E_\infty-ring, then a line bundle (𝔾 m\mathbb{G}_m-principal bundle) on X×Spec(E)X \times Spec(E) corresponds to a EE-(infinity,1)-module bundle over XX.

    Under this identification, one finds that definition 4.1.24 in Joost Nuiten’s thesis, used for “cohomological quantization by pull-push”, is essentially about the Wirthmüller isomorphism in a Wirthmüller context in such smooth E E_\infty-geometry. This is secretly the content of remark 2 at Wirthmüller context.

    Generally, six-operations Yoga is at its heart about characterizing how in the presence of two different pullbacks f !f^!, f *f^\ast or in the presence of two different push-forwards f *f_\ast, f !f_!, one may differ from the other only by a composite of dualizing and tensoring with a correction factor. For instance as in that remark 2.

    Now interpreted in E E_\infty-geometry as above, this becomes identified with another famous construction: the dualization becomes the Pontryagin-duality map from generalized EE-cohomology to EE-homology which is used to push-forward cohomology, and the tensoring with the correction factor becomes the cohomological twist induced by the Atiyah dual Thom spectrum arising from possible non-EE-orientability.

    Hence when interpreted in smooth E E_\infty-geometry then the prescription of “motivic quantization” becomes equivalently an exercise in six operations yoga.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeDec 9th 2013

    The nnLab used to state the fact that the inverse image of base change between toposes is cartesian closed only at cartesian closed functor. I have now added there the remark that this means that every base change of toposes constitutes a cartesian Wirthmüller context. Then I added brief remarks on both these statements to a few related entries, such as closed functor, base change, etale geometric morphism and made it a brief Examples-section at Wirthmüller context.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeJan 5th 2014

    Have written out a further class of examples at Wirthmüller context – Examples – On pointed objects.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeFeb 16th 2014
    • (edited Feb 16th 2014)

    I’d like to add to the list of examples at Wirthmüller context

    • “Categories of coherent D-modules pull-pushed along étale maps”

    (and maybe more generally smooth maps, not sure yet about the degree twists pan out in that case).

    I still need to go through this in more detail to confirm. But I gather that if f:XYf \;\colon\; X \longrightarrow Y is an étale map of (irreducible?) algebraic varieties, then there is an adjoint triple

    (f !f *f *):D coh(X)D coh(Y). (f_! \dashv f^\ast \dashv f_\ast) \;\colon\; D_{coh}(X) \longrightarrow D_{coh}(Y) \,.

    Moreover, generally the projection formula holds in the form Af *Bf *((f *A)B)A \otimes f_\ast B \stackrel{\simeq}{\longrightarrow} f_\ast ((f^\ast A) \otimes B).

    This should be an “op-Wirthmüller context”, in that it becomes one after passing to opposite categories and opposite functors.

    Zhen Lin seems to be energetic about these kinds of questions at the moment. Any help from him or anyone in confirming and/or ironing out subtleties will be appreciated. (I wish I had time to look into this in more leisure at the moment…)

    • CommentRowNumber12.
    • CommentAuthoradeelkh
    • CommentTimeJan 23rd 2015

    I added the reference

    to Wirthmüller context, Grothendieck context, and six operations. Though I haven’t read the paper so I don’t know if it actually fits on all these pages.

    • CommentRowNumber13.
    • CommentAuthoradeelkh
    • CommentTimeJan 23rd 2015

    By the way, Urs, you are probably aware, but Gaitsgory has written about the six operations in the dg-setting, for quasi-coherent sheaves, ind-coherent sheaves, and D-modules. It’s not quite the spectral/E_infinity setting but it’s the only thing in that direction that I’m aware of.

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeJan 23rd 2015

    Thanks for adding this reference! Yes, I am aware that Gaitsgory has notes on this, it was pointed out to me when I spoke about this in Paris in November. But I didn’t find time yet to look into it. If you have pointer to relevant document and page easily available, maybe you could add a further link to the nnLab entry? Thanks!!

    • CommentRowNumber15.
    • CommentAuthoradeelkh
    • CommentTimeJan 25th 2015

    I added a reference to the page six operations.

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeJan 4th 2019

    Now I realize that I never checked the following, which however would be the first thing to check:

    A Wirthmüller isomorphism in the generalized sense of Fausk-Hu-May 05 induces operations of pull-push through spans, along the lines discussed at indexed monoidal (infinity,1)-category.

    If we specialize this pull-push construction to the Wirthmüller isomorphism in the original and special sense, concerning left and right adjoints to the restriction-of-groups-functor in equivariant stable homotopy theory, we get from genuine equivariant spectra a pull-push of their fixed point spectra through spans in the orbit category.

    This special case of the general pull-push construction induced by generalized Wirthmüller isomorphisms ought to give just the spectral Mackey functor corresponding to the given genuine GG-spectrum.

    Has this been made explicit anywhere?