Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMar 11th 2014

    I gave the category:people entry Daniel Freed a bit of actual text. Please feel invited to edit further. Currently it reads as follows:

    Daniel Freed is a mathematician at University of Texas, Austin.

    Freed’s work revolves around the mathematical ingredients and foundations of modern quantum field theory and of string theory, notably in its more subtle aspects related to quantum anomaly cancellation (which he was maybe the first to write a clean mathematical account of). In the article Higher Algebraic Structures and Quantization (1992) he envisioned much of the use of higher category theory and higher algebra in quantum field theory and specifically in the problem of quantization, which has – and still is – becoming more widely recognized only much later. He recognized and emphasized the role of differential cohomology in physics for the description of higher gauge fields and their anomaly cancellation. Much of his work focuses on the nature of the Freed-Witten anomaly in the quantization of the superstring and the development of the relevant tools in supergeometry, and notably in K-theory and differential K-theory. More recently Freed aims to mathematically capture the 6d (2,0)-superconformal QFT.

  1. Edited the fact that Dan Freed is now at Harvard, rather than at UT Austin.

    Ari Krishna

    diff, v23, current