Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 1st 2014

    added to moduli space of curves a paragraph mentioning the result by Harer-Zagier on the orbifold Euler characteristic of g,1\mathcal{M}_{g,1} being ζ(12g)\zeta(1-2g).

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 1st 2014

    added a brief remark along these lines also to moduli space of elliptic curves – Properties – Euler characteristic

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeJul 16th 2014
    • (edited Jul 16th 2014)

    ah, so I only now realize that the Riemann moduli space is also equivalently that of almost complex structures mod orientation preserving diffeos (reviewed e.g. in Madsen 07, section 1.1).

    This has one nice consequence: this means that the moduli space may be constructed in a general abstract homotopy-type theoretic way just as is discussed in some detail at general covariance.

    I have added a remark on this to the entry:


    We indicate how this definition has a formulation in the homotopy-type theory H\mathbf{H} of smooth homotopy types.

    By the discussion at almost complex structure (see this remark), if the tangent bundle of a 2n2n-dimensional smooth manifold is modulated by a map

    τ X:XBGL(2n,) \tau_X \;\colon\; X \longrightarrow \mathbf{B}GL(2n,\mathbb{R})

    to the delooping in smooth stacks of the general linear group, then an almost complex structure on XX is equivalently a lift JJ in

    X J BGL(n,) τ almComp BGL(2n,). \array{ X && \stackrel{J}{\longrightarrow} && \mathbf{B} GL(n,\mathbb{C}) \\ & {}_{\mathllap{\tau}}\searrow && \swarrow_{\mathrlap{almComp}} \\ && \mathbf{B} GL(2n,\mathbb{R}) } \,.

    This in turn is equivalently a map

    J:τ XalmComp J \;\colon\; \tau_X \longrightarrow almComp

    in the slice (∞,1)-topos H /BGL(2n,)\mathbf{H}_{/\mathbf{B}GL(2n,\mathbb{R})}, hence with the canonical empedding

    τ ():SmthMfd 2n etH /BGL(2n,) \tau_{(-)} \;\colon\; SmthMfd_{2n}^{et} \hookrightarrow \mathbf{H}_{/\mathbf{B}GL(2n,\mathbb{R})}

    understood, then almCompH /BGL(2n,)almComp \in \mathbf{H}_{/\mathbf{B}GL(2n,\mathbb{R})} is the universal moduli stack of almost complex structures.

    Now τ X\tau_X carries a canonical ∞-action by the diffeomorphism group. Using this one may canonically form the homotopy quotient

    [τ X,almComp]//Diff(X) [\tau_X, almComp]//Diff(X)

    by a general abstract construction that is discussed in some detail at general covariant – Formalization in homotopy type theory. For n=1n =1 this is hence the Riemann moduli space.

    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeJul 16th 2014

    Somewhat related new entry, Outer space.