Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes science set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 27th 2016

    I added a Definition section to Burnside ring (and made Burnside rig redirect to it).

    • CommentRowNumber2.
    • CommentAuthorDavid_Corfield
    • CommentTimeSep 27th 2016

    And what can be said about the relationship to the Burnside category? Wikipedia has it as a categorification.

    Also, Burnside rigs can be defined more generally. e.g., for distributive categories.

    • CommentRowNumber3.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 27th 2016

    I wasn’t aware of Schanuel’s terminology – thanks.

    I’m curious when the Burnside ring coincides with the representation ring (say working over the ground field \mathbb{C}). Jim Dolan once showed me some fairly convincing empirical evidence that the Burnside ring of the symmetric group S nS_n is the same as the representation ring; an example is given at the page Gram-Schmidt process. But I never seriously attempted to find a proof.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeSep 10th 2018

    added more and original references for the statement that the Burnside ring is isomorphic to the equivariant stable cohomotopy of the point

    A(G)𝕊 G(*) A(G) \simeq \mathbb{S}_G(\ast)

    Am adding this also at equivariant stable cohomotopy

    diff, v10, current

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeSep 11th 2018
    • (edited Sep 11th 2018)

    The canonical map of spectra 𝕊KU\mathbb{S} \longrightarrow KU becomes, when restricted to the point with a GG-action, the ring homomorphism from the Burnside ring A(G)A(G) to the representation ring R(G)R(G)

    A(G)R(G) A(G) \longrightarrow R(G)

    which sends a finite GG-set SS to the vector space spanned by SS and equipped with the induced linear permutation representation.

    This is just the kind of map that underlies Dolan-Baez’s old “groupoidification” idea. There the goal was (I suppose) to see how much of the linear algebra can be understood to arise from the combinarics somehow in a conceptual way.

    Here one might want to ask a similar question: How much of KUKU is “induced” by 𝕊\mathbb{S}? Or to start with, how much of R(G)R(G) is induced by A(G)A(G)? Is the former something we’d obtain from the latter by following some god-given path?

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 11th 2018

    Here one might want to ask a similar question: How much of KUKU is “induced” by 𝕊\mathbb{S}? Or to start with, how much of R(G)R(G) is induced by A(G)A(G)? Is the former something we’d obtain from the latter by following some god-given path?

    There are related questions asked at Gram-Schmidt process, where the toy example is of representations of symmetric groups. When I saw Jim Dolan and Simon Burton back in February, we were musing about the coincidence of the number of Young diagrams being the same as the number of conjugacy classes, and I thought I heard Jim suggesting that the Young diagrams might be better understood in terms of conjugacy classes of a (Langlands) dual.

    Anyway, I’d like to understand this myself.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeSep 11th 2018

    Thanks for the pointer!

    Oh, wow, am I reading this correctly as directly implying that the homomorphsim

    A(S n)R(S n) A(S_n) \longrightarrow R(S_n)

    is in fact surjective?!

    • CommentRowNumber8.
    • CommentAuthorDavid_Corfield
    • CommentTimeSep 11th 2018

    Re #6, I had a similar idea back here after David Ben-Zvi told us about Langlands duality:

    A thought after all these months: if symmetric groups fall into this picture by being GL(n,𝔽 1)GL(n,\mathbb{F}_1), and if GLs are Langlands self-dual, this explains how Young diagrams parameterize conjugacy classes and at the same time irreducible representations.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeSep 11th 2018
    • (edited Sep 11th 2018)

    Interesting, thanks.

    Next I’d like to know how much of all this survives changing the group to a finite subgroup of SU(2)SU(2). But need to run now…

    • CommentRowNumber10.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 11th 2018

    Re #7: that’s what I had understood, but I certainly don’t have a proof for general nn.

    There may be a more categorified way of saying this, considering a suitable category of “virtual permutation representations”, where the map A(S n)R(S n)A(S_n) \to R(S_n) is promoted to an essentially surjective functor, but I’d need to think more how I’d like to say it.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeSep 11th 2018

    I see, thanks.

    How about taking G=A 4G = A_4 the alternating group. Might the construction still give a surjection A(A 4)R(A 4)A(A_4) \to R(A_4)?

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeSep 11th 2018
    • (edited Sep 11th 2018)

    Actually, I would be interested in knowing it for the “binary alternarting group” 2A 42 A_4, i.e. the “double cover” of the tetrahedral group.

    Really I’d like to know it for all the finite subgroups of SU(2)SU(2), but here I am thinking that maybe the (binary) alternating ones are close enough to the symmetric groups that it would be easy to adopt the proof.(?)

    • CommentRowNumber13.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 11th 2018

    Urs, I believe Simon Burton may have carried out calculations of the categorified Gram-Schmidt process for groups like that (we were discussing the dihedral group of order 88). I’ll ask him.

    • CommentRowNumber14.
    • CommentAuthorDavidRoberts
    • CommentTimeSep 12th 2018

    For what it’s worth, this article has the details for the Burnside ring of the icosahedral group.

    • CommentRowNumber15.
    • CommentAuthorDavidRoberts
    • CommentTimeSep 12th 2018
    • (edited Sep 12th 2018)

    OK, even better.

    This page says that the map from the Burnside ring to the representation ring for S 4S_4 is not injective.

    In fact, the page here says that the comparison map is only surjective for the trivial group and any two-element group, and is “seldom” injective.

    EDIT: one last one. In Burnside’s book, on pdf page 272, there the ’table of marks’ for A 4A_4 and what seems to be at least part of the multiplication structure of the Burnside ring.

    EDIT again: tom Dieck gives information about A 5A_5.

    If I find something about the binary versions I will link to it.

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018
    • (edited Sep 12th 2018)

    Thanks for all the pointers! Am reading…

    But now I am confused: Isn’t Todd’s discussion at “Categorified Gram-Schmidt process” saying that β\beta is surjective, for S 4S_4?

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018

    But your first link, at the very bottom, confirms Todd’s computation. Clearly this makes beta surjective, or else I am missing something basic.

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018
    • (edited Sep 12th 2018)

    There is

    • Alex Bartel, Tim Dokchitser, Rational representations and permutation representations of finite groups, Math. Ann. 364 no. 1 (2016), 539-558 (arXiv:1405.6616)

    which seems to discuss the surjectivity, or not, head on.

    But need to run now.

    • CommentRowNumber19.
    • CommentAuthorDavidRoberts
    • CommentTimeSep 12th 2018

    Hmm, a mystery indeed! I’m not sure what’s going on. I agree that it looks like the formulas at the bottom of this page show that every basis vector in the representation ring R(S 4)R(S_4) is in the image of β\beta.

    Worse, PlanetMath cites a theorem of Segal that says for pp-groups, and the representation ring over \mathbb{Q}, β\beta is always surjective! (and an isomorphism for such groups iff they are cyclic)

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018

    Thanks!

    So it’s that one page www.maths.manchester.ac.uk/~jm/wiki/Representations/Burnside which disagrees with all other sources that we have seen so far, on the surjectivity of β\beta. Might it be that the error there is caused by the evident glitch of not thinking about virtual representations, but plain representations?

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018
    • (edited Sep 12th 2018)

    Now that I am back on my laptop machine:

    Indeed, the article from #18

    • Alex Bartel, Tim Dokchitser, Rational representations and permutation representations of finite groups, Math. Ann. 364 no. 1 (2016), 539-558 (arXiv:1405.6616)

    has detailed references regarding surjectivity of β\beta or not: see the paragraph in the middle of the first page.

    In particular they cite what must be Segal’s result that PlanetMath is alluding to (at planetmath.org/RepresentationRingVsBurnsideRing), but together with a bunch more.

    PlanetMath also says that β\beta is an iso for all cyclic groups! This is most interesting in view of my quest for β\beta in the case of ADE groups. But I haven’t tracked down a real reference for this statement yet.

    • CommentRowNumber22.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 12th 2018

    (To be sure, in the nLab I was considering the ground field to be \mathbb{C} or an algebraically closed field.)

    • CommentRowNumber23.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018

    Oh, the statement that β\beta is surjective for all cyclic groups follows from the statement for pp-groups from the fundamental theorem of cyclic groups! Right?

    • CommentRowNumber24.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018

    I am starting a proposition collecting the known surjectivity results here.

    To be expanded and improved (need to add assumptions on ground field. For the moment everything is in char 0, I suppose.)

    • CommentRowNumber25.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018
    • (edited Sep 12th 2018)

    have briefly been trying to find (in the literature, that is :-) the proof that β\beta is an iso for cyclic groups. From the way this is stated on PlanetMath (here) I gather this is meant to be evident from the proof that Segal gives of surjectivity, or else from the formulas in Hambleton-Taylor 99, but if so, I need to spend more time with it.

    • CommentRowNumber26.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018
    • (edited Sep 12th 2018)

    just discovered that Ben Webster gave the simple argument why β\beta is injective precisely for the cyclic groups, here!

    Together with the surjectivity from Segal’s theorem, this shows that β\beta is an isomorphism for cyclic groups. Probably the author of that PlanetMath entry found the injectivity argument too trivial to mention here.

    [ have added that to the entry, in this prop. ]

    • CommentRowNumber27.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018
    • (edited Sep 12th 2018)

    Okay, so I have now much of what I was after, but only for rational representations. Need to think about how much of this carries over to complex representations…

    • CommentRowNumber28.
    • CommentAuthorUrs
    • CommentTimeSep 12th 2018
    • (edited Sep 12th 2018)

    Oh, I see now.

    \mathbb{Q} is a splitting field only for /2\mathbb{Z}/2, but for none of the other cyclic groups (here). Hence surjectivity of β\beta over \mathbb{Q} breaks after passage to \mathbb{C} for all /n\mathbb{Z}/n with n>2n \gt 2.

    I suppose this resolves the apparent contradiction above in #20 ! (Maybe that’s what Todd was trying to tell us in #22. Sorry for being slow.)

    • CommentRowNumber29.
    • CommentAuthorUrs
    • CommentTimeSep 13th 2018

    I have emailed James Montaldi on the issue with the webpage www.maths.manchester.ac.uk/~jm/wiki/Representations/Burnside mentioned around #20 above. He agreed that this was in error and has removed the statement about surjectivity now.

    • CommentRowNumber30.
    • CommentAuthorTim_Porter
    • CommentTimeSep 13th 2018
    • (edited Sep 13th 2018)

    I do not know if it helps, but I had colleagues who used to work on structures related to lambda rings on the Burnside ring and looking up lambda rings I find a reference to James Borger’s paper on Lambda rings and the field with one element. The Burnside ring does have a pre-λ\lambda -ring structure if I remember rightly, but not a ‘special’ one.

    One of the papers was ‘Adams operations and λ-operations in β-rings by I. Morris and C.D. Wensley, another is Computing Adams operations on the Burnside ring of a finite group. J. Reine Angew. Math. 341 (1983), 87–97, by G. Morris and the other two authors.

    These are mentioned in this MO question. This relates to a conjecture in Knutson, Donald (1973), λ-rings and the representation theory of the symmetric group, Lecture Notes in Mathematics, 308, which dies nit seem o quite make sense.

    Does this relate to the problem of the surjectivity etc. as the representation ring is a Lambda ring?

    • CommentRowNumber31.
    • CommentAuthorUrs
    • CommentTimeSep 13th 2018
    • (edited Sep 13th 2018)

    The point in Guillot 06 “Adams operations in cohomotopy” is to show that it is not quite a λ\lambda-ring, but a “β\beta-ring”.

    • CommentRowNumber32.
    • CommentAuthorTim_Porter
    • CommentTimeSep 13th 2018

    I believe the initial notion of β\beta-ring is, in fact, due to another ex-colleague! (Remember Dudley Littlewood was Ronnie Brown’s predecessor at Bangor and he was central in the development of permutation representation theory.) I really should look back over that stuff, and will if I have a moment. Guillot’s paper looks interesting. Thanks.

    • CommentRowNumber33.
    • CommentAuthorUrs
    • CommentTimeSep 16th 2018
    • (edited Sep 16th 2018)

    added remark that Segal’s theorem A(G)𝕊 G(*)A(G) \overset{\simeq}{\longrightarrow} \mathbb{S}_G(\ast) is a special case of the tom Dieck splitting theorem

    diff, v16, current

    • CommentRowNumber34.
    • CommentAuthorDavid_Corfield
    • CommentTimeSep 26th 2018

    There might be some interesting ideas about GG-equivariant 𝔽 1\mathbb{F}_1-theory in

    • Snigdhayan Mahanta, GG-theory of 𝔽 1\mathbb{F}_1-algebras I: the equivariant Nishida problem, (arXiv:1110.6001)
    • CommentRowNumber35.
    • CommentAuthorUrs
    • CommentTimeSep 26th 2018

    Thanks for the pointer.

    He attributes the observation that the Barratt–Priddy–Quillen theorem may be read as sying 𝕊K𝔽 1\mathbb{S} \simeq K \mathbb{F}_1 to

    • Y. Manin. Lectures on zeta functions and motives (according to Deninger and Kurokawa). Ast ́erisque, (228):4, 121–163, 1995. Columbia University Number Theory Seminar (New York, 1992) (pdf)

    I have looked through that pdf. While I see it talk about 𝔽 1\mathbb{F}_1, I didn’t find a remark yet concerning Barratt–Priddy–Quillen…

    • CommentRowNumber36.
    • CommentAuthorUrs
    • CommentTimeOct 7th 2018
    • (edited Oct 7th 2018)

    added pointer to

    diff, v23, current

    • CommentRowNumber37.
    • CommentAuthorUrs
    • CommentTimeJan 27th 2019

    added a Properties-section (here) on expressing the Burnside product in terms of the table of marks

    diff, v24, current

  1. Nice! Tweaked slightly to make the statement hopefully completely clear.

    diff, v25, current

    • CommentRowNumber39.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2020
    • (edited Jun 3rd 2020)

    added re-publication data to:

    diff, v31, current

    • CommentRowNumber40.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2020
    • (edited Jun 3rd 2020)

    Hm, where exactly in Burnside’s original book does he actually introduce the Burnside ring? Or does he even?

    • CommentRowNumber41.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 3rd 2020

    I doubt anyone this early is calling anything a ring other than collections of numbers or polynomial. Abstract rings certainly come later. Or do you just mean where he talks about something we’d recognise as a ring?

    • CommentRowNumber42.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2020

    I’d like to cite the invention of the Burnside ring, in whatever guise. Is there a page in that book on which we can recognize the concept being conceived?

    • CommentRowNumber43.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 3rd 2020

    According to the commentary in his collected papers, the origins are to be found in this 1901 paper, On the Representation of a Group of Finite Order as a Permutation Group, and on the Composition of Permutation Groups, and then sections 184-185 of the second edition (1911) of his monograph.

    • CommentRowNumber44.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 3rd 2020

    Some commentary here, which claims Solomon coined the name.

    • CommentRowNumber45.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2020

    Thanks!!

    I’ll look into it in a moment…

    • CommentRowNumber46.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2020

    Hm, in rev 12 I had added a line saying

    The concept was named by Dress, following [ Burnside 1897 ]

    I must have read this somewhere, but I forget where.

    • CommentRowNumber47.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 3rd 2020

    In The Burnside algebra of a finite group, Solomon writes

    The isomorphism classes of GG-sets may be added and multiplied in natural fashion and generate a commutative ring [G]\mathcal{B}[G] which, since it seems to have been defined for the first time in Burnside’s book [3, Secs. 184-5], we call the Burnside ring of GG.

    That’s the second edition importantly denoted [3].

    • CommentRowNumber48.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2020

    Thanks again.

    Since that second edition of the book is from 1911, the earliest reference might indeed be that other article you found:

    • William Burnside, On the Representation of a Group of Finite Order as a Permutation Group, and on the Composition of Permutation Groups, Proceedings of the American Mathematical Society 1901 (doi:10.1112/plms/s1-34.1.159)

    where the Burnside product appears as equation (i).

    After doing some fun translation:

    • his “permutation group GG” is our “GG-set” (!),

    • his “compound” is our “sub-set”

    • his “compounding” is our “Cartesian product”.

    • CommentRowNumber49.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 3rd 2020

    It looks like it is Solomon then who names it in 1967. Hazelwink claims it’s Dress (“According to some the Burnside ring was introduced by Andreas Dress in [117]”), but that’s to a 1969 paper, and Dress doesn’t call it the Burnside ring there anyway.

    • CommentRowNumber50.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2020

    Excellent, thanks! Am editing this into the entry now..

    Coming back to that book: our pdf link seems to be to the first edition then, since Sections 184-185 there are about polygons. Do we have a pdf-copy of that second edition (or later)?

    • CommentRowNumber51.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2020

    Okay, I have now expanded the beginning of the References-section (here) to read as follows:


    The Burnside product seems to first appear as equation (i) in:

    • {#Burnside01} William Burnside, On the Representation of a Group of Finite Order as a Permutation Group, and on the Composition of Permutation Groups, Proceedings of the American Mathematical Society 1901 (doi:10.1112/plms/s1-34.1.159)

    (beware the terminology: a G-set is called a “permutation group GG” in that article, a subset is called a “compound” and the Cartesian product of GG-sets is called their “compounding”).

    It is then included (not in the first but) in the second edition (Sections 184-185) of:

    The term “Burnside ring” as well as “Burnside algebra” is then due to (see NMT 04, Vol. 1 p. 60 for historical comments)

    diff, v34, current

    • CommentRowNumber52.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 3rd 2020

    I found a copy so replaced the link

    • {#Burnside1897} William Burnside, Theory of Groups of Finite Order, Second edition Cambridge 1911 (pdf)

    diff, v35, current

    • CommentRowNumber53.
    • CommentAuthorUrs
    • CommentTimeJun 3rd 2020

    Thanks!

    Interesting: I find the sections 184-185 in that 1911 textbook version considerably less clear than the 1901 article. Not easy to spot the concept of the Burnside ring here, even if one knows what one is looking for and where to look for it.

    Anyway, so I’ll be citing the 1901 article. That’s what I wanted to know.

    • CommentRowNumber54.
    • CommentAuthorUrs
    • CommentTimeMar 17th 2021

    finally added pointer to

    Will give this book its own category:reference-entry, to make fully transparent that this and Transformation Groups and Representation Theory are two distinct books, albeit by the same author…

    diff, v37, current

  2. typo

    Stuart Cleaver

    diff, v41, current