Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeFeb 17th 2010

    started adding some genuine substance to model structure on sSet-categories (which used to be just a template).

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeFeb 29th 2012

    the original definition of the fibrations at model structure on sSet-categories was a bit ambiguous. I have replaced it by the more useful formulation: (degreewise Kan fibration and) isofibration on homotopy categories.

    • CommentRowNumber3.
    • CommentAuthorTim_Porter
    • CommentTimeAug 23rd 2013

    Is the definition of Dwyer-Kan weak equivalence at model structure on sSet-categories correct? I note that Julie Bergner in her article, (TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 359, Number 5, May 2007, Pages 2043–2058 ) uses a different set of conditions with use of π 0𝒞\pi_0\mathcal{C} instead of the ‘homotopy category’. That latter is a bit suspect or confusing anyhow because until we have a class of weak equivalences we cannot form a homotopy category in the strict sense of homotopy category, (well, that possibility is almost handled there but it is not explicit and so is a bit confusing). I looked for the entry that describes the category given by applying π 0\pi_0 to each 𝒞(x,y)\mathcal{C}(x,y), but could not remember what it was called here.

    Once I know that I can fix the entry, but I want to check that I haven’t missed some point!

    • CommentRowNumber4.
    • CommentAuthorZhen Lin
    • CommentTimeAug 23rd 2013

    It seems to be conventional to call the π 0\pi_0 category the ‘homotopy category’ – this is what Lurie [Higher topos theory] and Rezk [A model for the homotopy theory of homotopy theories] also do, for example. Lawvere [Axiomatic cohesion] seems to attribute this kind of construction to Hurewicz.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeAug 23rd 2013

    It’s as Zhen Lin says. But it is true that it wouldn’t hurt to clarify this in the entry.

    • CommentRowNumber6.
    • CommentAuthorMike Shulman
    • CommentTimeAug 23rd 2013

    I would say it is rather the page homotopy category that needs correction if its definition does not include this. Isn’t passing to π 0\pi_0 of hom-spaces the original meaning of “homotopy category”?

    • CommentRowNumber7.
    • CommentAuthorTim_Porter
    • CommentTimeAug 23rd 2013
    • (edited Aug 23rd 2013)

    Mike, your comment is exactly my thought, and I had a sneaky feeling that it was homotopy category that might need attention.

    My own view is that that entry is in a bit of a mess! Harry’s comment is relevant here. It is a question of conventions I think. Classically and conceptually the homotopy category (of spaces) is formed by dividing out by the homotopy relation. It is then a theorem that if you take spaces[homotopyequivalences 1]spaces[homotopy equivalences^{-1}] you get the same thing. The C[Σ 1C[\Sigma^{-1} is a ’category of fractions’ not a ’homotopy category’ in such classics as Gabriel and Zisman, although it can be argued that that term makes more sense if there is a ’calculus of fractions’ around. (There is an old paper by Bauer and Dugundji that explores the relationship with homotopy a bit more.) … so which comes first for a modern nPOV treatment? The quasicat viewpoint could be emphasised and that could be firmly based in the original meaning.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeAug 23rd 2013

    It’s not a deep point either way, just a matter of language convention. Just add a remark for clarification where you see the need.

    • CommentRowNumber9.
    • CommentAuthorMike Shulman
    • CommentTimeAug 24th 2013

    Tim, feel free — I don’t have time.

    • CommentRowNumber10.
    • CommentAuthorZhen Lin
    • CommentTimeAug 24th 2013

    Hmmm. I’m inclined to agree with Tim Porter: it is a somewhat non-trivial theorem that the π 0\pi_0 category is also a localisation in the sense of inverting weak equivalences. In fact it’s not even true for simplicial model categories unless one cuts down to the full subcategory of cofibrant–fibrant objects. In general, the best we can say is that the π 0\pi_0 category of a simplicially tensored or cotensored category is the localisation at the simplicial homotopy equivalences. The situation for cohesive toposes appears to be even more murky.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeAug 24th 2013
    • (edited Aug 24th 2013)

    it is a somewhat non-trivial theorem that the π 0 category is also a localisation in the sense of inverting weak equivalences.

    That’s not being doubted. It’s just about what a word is to mean in some article. Just add a comment on the nLab page that clarifies it.

    • CommentRowNumber12.
    • CommentAuthorTim_Porter
    • CommentTimeAug 24th 2013

    As I unconverted and unrepentant shape theorist, Urs, I beg to disagree. When you choose a QMC structure, or even a cat. with w.e. structure, you are choosing to filter out information from the start. (Of course, this is very useful, but really has little to do with homotopy!) If you want to study phenomena that are exhibited by non-cofibrant /non-fibrant objects then you are sunk as you have to replace them by a single replacement. (Of course, there are deeper ways around this, but that is a slightly different point.)

    I will go and try to change the entry.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeAug 24th 2013

    Tim, you cannot disagree with me, since I didn’t make a statement. I am just suggesting that you add a clarification to the page where you see the need.

    • CommentRowNumber14.
    • CommentAuthorTim_Porter
    • CommentTimeAug 24th 2013
    • (edited Aug 24th 2013)

    Here is a statement:

    It’s not a deep point either way, just a matter of language convention.

    ;-)

    I have tried to clarify things a little. I also took out the old ’discussion’ between Harry and myself.

    More seriously, that page could perhaps benefit from having something on ’homotopy category of quasi-categories’, or should we direct ’the reader to some other entry for that?

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeJul 25th 2014

    Reminder to myself: add the proposition that the model structure on sSetCat is right proper.

    • CommentRowNumber16.
    • CommentAuthorZhen Lin
    • CommentTimeJul 25th 2014

    Is it left proper? The Dwyer–Kan model structure for simplicial categories over a fixed set of objects is both left proper and right proper, and they used left properness to justify their construction of the standard simplicial localisation.

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeJul 25th 2014

    re #15: done

    re #16: dunno

    • CommentRowNumber18.
    • CommentAuthorDmitri Pavlov
    • CommentTimeApr 6th 2020

    Redirects.

    diff, v20, current

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTimeJun 9th 2021

    added pointer to:

    diff, v24, current

    • CommentRowNumber20.
    • CommentAuthorHurkyl
    • CommentTimeJun 9th 2021

    Lurie states left properness, so I added that fact.

    diff, v25, current

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeJun 12th 2021
    • (edited Jun 12th 2021)

    there was an old claim here, without proof or reference, that Quillen equivalences induce Dwyer-Kan equivalences.

    I have added:

    This is made explicit in Mazel-Gee 15, p. 17 to follow from Dwyer & Kan 80, Prop. 4.4 with 5.4.

    diff, v26, current

    • CommentRowNumber22.
    • CommentAuthorUrs
    • CommentTimeJun 12th 2021
    • (edited Jun 12th 2021)

    also


    The analogous statement under further passage to Joyal equivalences of quasi-categories is Lurie 09, Cor. A.3.1.12, under the additional assumptions that the model categories are simplicial, that every object of CC is cofibrant and that the right adjoint is an sSet enriched functor.


    diff, v26, current

    • CommentRowNumber23.
    • CommentAuthorUrs
    • CommentTimeMay 12th 2023

    added (here) paragraph on the relation to the model structure on simplcial groupoids

    (essentially the same material that I just added there)

    diff, v30, current

    • CommentRowNumber24.
    • CommentAuthorUrs
    • CommentTimeMay 29th 2023

    added (here) the statement that Dwyer-Kan-Bergner cofibrations are in particular hom-objectwise monos

    diff, v33, current

    • CommentRowNumber25.
    • CommentAuthorUrs
    • CommentTimeMay 31st 2023

    added a remark “failure of Cartesian closed model structure” (here)

    diff, v35, current