Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeAug 2nd 2017

    I gave the entry wave front set more of an Idea-section, and I added pointer to Hörmander’s book.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeAug 4th 2017
    • (edited Aug 4th 2017)

    I have added to the Idea-section at wave front set pointer to the propagation of singularities theorem (so far just a pointer to references).

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeOct 23rd 2017

    Added the statement that taking derivatives does not increase the wave front set of a distribution: here

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeOct 31st 2017
    • (edited Oct 31st 2017)

    I keep being unsatisfied with the expositional aspect of the entry wave front set. The perspective offered there goes back to Tim van Beek’s original rev 1, which emphasizes the Paley-Wiener-Schwartz theorem-characterization of the Fourier-Laplace transform. While there is nothing wrong with this technically speaking, I feel like the complex analysis invoked this way, subsuming the Laplace tansform, makes the concept of the wave front set come across unnecessarily involved and indirect.

    It seems to me that a good idea of what’s going on is rather provided by the “purely real” characterization that Hörmander uses in the relevant section 8.1 of his book, which I have stated now as a stand-alone proposition here, right after the full-blown Paley-Wiener-Schwartz theorem.

    I have written out what I imagine as the more-easily-readable-definition now at compactly supported distribution (here) in the course of adding several other things to this entry, too. But unless somebody objects, and maybe after some further polishing, I feel like this material could replace what we currently have at the beginning of wave front set.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeNov 21st 2017
    • (edited Nov 21st 2017)

    Hm, does anyone have an elementary way to compute the wave front set of the causal propagator Δ\Delta on Minkowski spacetime, using the knowldge that its Fourier transform is simply δ(k μk μ+m 2)sgn(k 0)\delta\left( k_\mu k^\mu +m^2 \right) sgn(k_0) ?

    I tried this:

    For bb any bump function we need to analyze the decay of the Fourier transform of

    xb(xa)Δ(x) x \mapsto b(x- a) \Delta(x)

    for all aa. This Fourier transform is the convolution of

    kb^(k)e ika k \mapsto \hat b(k) e^{i k a}

    with δ(k μk μ+m 2)sgn(k 0)\delta\left( k_\mu k^\mu +m^2 \right) sgn(k_0), so effectively it is the mass shell smeared by the Fourier transform b^\hat b of bb.

    Now if b^\hat b had compact support, and using that the mass shell asymptotes to the light cone, it would be clear that along a direction kk not on the light cone, this function would decay, in fact it would eventually vanish in that direction, while for kk along the direction of the light cone it would not decay, but asymptote to a constant.

    In reality b^\hat b does not have compact support, if bb does. All we know (?) is that it decays polynomially. First I thought that the previous kind of argument would still work, now concluding that for kk in a direction not along the lightcone the function will vanish polynomially.

    But it cannot be that simple, because we know that the wave front set is supported over the singular locus, hence has to depend on the coordinate aa where the bump function is centered, while nothing in this naive argument depends on aa.

    So this naive argument is too naive. Is there a way to promote this to an actual proof? Or is there an alternative explicit computation?

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)