Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science connection constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity grothendieck group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory history homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limit limits linear linear-algebra locale localization logic mathematics measure-theory modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topological topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeFeb 22nd 2010
    • (edited Feb 22nd 2010)

    added a second equivalent definition at quasi-category , one that may be easier to motivate

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeOct 21st 2016

    Added pointer to Rezk 16

    Removed the following query box, as this has been dealt with under related concepts:

    +– {: .query} Stephen Gaito: If we want to weaken this even further to provide a simplicial model of, for example, a (∞,2)-category, how would we do this?

    Would we apply the lifting condition on all but three of the indices… and if so which three? (The first, last and ????)

    Mike Shulman: You may be looking for something along the lines of a weak complicial set.

    =–

  1. I certainly would not regard what is referred to as the fundamental theorem of category theory in the notes linked to (namely that a fully faithful and essentially surjective functor defines an equivalence of categories) as a fundamental theorem of category theory; indeed, I always avoid it.

    • CommentRowNumber4.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 23rd 2016

    While I don’t disagree with Richard, I didn’t spot mention of this “fundamental theorem” either in this thread or in the article quasi-category. What’s the reference?

    • CommentRowNumber5.
    • CommentAuthorCharles Rezk
    • CommentTimeOct 24th 2016

    I use the term (partly in jest) in my quasicategory notes. But only partly in jest: it’s a powerful tool, and is somewhat non-trivial. In the \infty setting, it’s even more non-trivial, and is very much in the spirit of Whitehead’s theorem (on homotopy equivs of CW complexes = weak equivs), which is kind of a fundamental theorem of classical homotopy.

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 24th 2016

    Thanks for clearing that up, Charles. I’m guessing Richard avoids it partly because of its non-constructive nature (e.g., the axiom of choice is needed for it), but maybe he’d like to amplify.

    • CommentRowNumber7.
    • CommentAuthorMike Shulman
    • CommentTimeOct 24th 2016

    IMHO, it’s only non-constructive if you insist on using wrong definitions. (-: In a set theoretic foundation without choice, “functor” should mean “anafunctor”; whereas in HoTT we have univalent categories that also satisfy the theorem constructively. I can see regarding it as fundamental – it’s essentially a category-theoretic manifestation of the axiom of unique choice, i.e. a “functor comprehension principle”, and the analogous function comprehension principle is certainly fundamental to set theory.

    • CommentRowNumber8.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 24th 2016

    Word. :-)

  2. My objections to it are principally twofold: firstly, as Todd guessed, because of the non-constructivity, and secondly because it does not feel to me like pure category theory (it makes use of a set-theoretic view of a category, so is not obviously able to be expressed internally to the 2-category (or similar) of categories).

    No doubt both of these points can be disputed. Mike has already disputed the first one, and no doubt someone will point out that one can formulate the notion of a fully faithful and essentially surjective functor internally to something like the 2-category of categories, and probably prove the result in that setting using some kind of category-theoretic variant of the axiom of choice.

    I don’t really wish to discuss these two points. I’ve never been very keen on anafunctors, and my firm opinion that there is no way to get around the use of the axiom of choice here. If one changes something so that one doesn’t need it, one is probably losing something elsewhere (simplicity, if nothing else). Mostly, I just find that arguments that avoid the use of this fact are almost ’better category theory’ according to my aesthetic taste, and I’ve always found that one can avoid it if one understands whatever one needs it for deeply enough. But this is subjective, so we’re not going to get very far with trying to convince one another :-)!

    • CommentRowNumber10.
    • CommentAuthorDmitri Pavlov
    • CommentTimeFeb 11th 2019

    Added a reference to Moritz Groth’s lectures.

    diff, v67, current

    • CommentRowNumber11.
    • CommentAuthorTim_Porter
    • CommentTimeFeb 11th 2019

    Minor changes in formatting.

    diff, v68, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)