Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology combinatorics comma complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory kan lie lie-theory limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology newpage nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • I expanded derivation a little:

      gave the full definition with values in bimodules and added to the examples a tiny little bit on examples for this case.

      I think I also corrected a mistake in the original version of the definition: the morphism  d : A \to N is of course not required to be a module homomorphism (well, it is, but over the underlying ground ring, not over A).

      At Kähler differential I just polished slightly, adding a few words and links in the definition and adding sections. I don't really have time for this derivations/Kähler stuff at the moment. Am hoping that those actively talki9ng about this on the blog will find the time to archive their stable insights at this entry.

    • I started writing folk model structure on Cat with an explicit summary of the construction, and a description of how it can be modified to work if you assume only COSHEP. I feel like there should also be a "dual" model structure assuming some other weakening of choice, in which all categories are cofibrant and the fibrant objects are the "stacks", but I haven't yet been able to make it come out right.

    • Noticed that the entry topos was lacking an example-section, so I started one: Examples. Would be nice if eventually we'd have some discussion of non-Grothendieck topos examples.

      I won't do that now, off the top of my head. Maybe later.

    • cellular set, mainly references for now

      BTW, Does anybody have a file or scan of Joyal's original 1997 article ?

    • At Grothendieck fibration I wonder if we can make the definition less evil than the non-evil version there, with applications to Dold fibrations. Also the insertion of a necessary adjective at topological K-theory.

      -David Roberts
    • created infinity-limits - contents and added it as a toc to relevant entries

      (maybe I shoulod have titled the page differently, but it doesn't matter much for a toc)

    • created a section Contractible objects at lined topos.

      This introduces and discusses a bit a notion of objects being contractible with respect to a specified line object (maybe the section deserves to be at interval object instead, not sure).

      This notion is something I made up, so review critically. I am open for suggestions of different terminology. The concept itself, simple as it is (though not entirely trivial), I need for the discussion of path oo-groupoids of oo-stacks on my personal web:

      if a lined Grothendieck topos  (\mathcal{T} = Sh(C),R) is such that all representable objects are contractible with respect to the line object  R, then the path oo-groupoid functor

       \Pi : SSh(C) \to SSh(C)

      on simplicial sheaves, which a priori is only a Qulillen functor of oo-prestacks, enhances to a Quillen functor of oo-stacks (i.e. respects the local weak equivalences).

    • I intend to considerbly expand the story at Atiyah Lie groupoid. But this afternoon I didn't get as far as I intended to, and now I have to quit and visit my parents. So this is to be continued. But so far I did this:

    • I worked on polishing

      Towards Higher Categories

      on John Baez's web. I

      • added hyperlinks to all the names appearing

      • turned the remaining "infininty"s to "oo"s

      I was almost done when the Lab broke down, though, it seems. Currently the server does not respond.

    • Added to the Idea section at space and quantity a short paragraph with pointers to the (oo,1)-categorical realizations. (Parallel to the blog discussion here)

    • no, I didn't create an entry with that title.

      but I added to n-fibration a brief link, though, to the concept that is currently described at Cartesian fibration, which models Grothendieck fibrations of (oo,1)-categories.

      This here is mainly to remind me that there is need to polish and reorganize the nLab entries on higher fibrations into something more coherent.

    • This comment is invalid XHTML+MathML+SVG; displaying source. <div> <p>created <a href="http://ncatlab.org/nlab/show/nonabelian+group+cohomology">nonabelian group cohomology</a></p> <p>the secret title of this entry is "Schreier theory done right". (where "right" is right from the <a href="http://ncatlab.org/nlab/show/nPOV">nPOV</a>)</p> <p>this is the first part of the answer to</p> <blockquote> What is going on at <a href="http://ncatlab.org/nlab/show/nonabelian+Lie+algebra+cohomology">nonabelian Lie algebra cohomology</a>? </blockquote> <p>The second part of the answer is the statement:</p> <blockquote> The same. </blockquote> <p>;-)</p> <p>I'll expand on that eventually.</p> </div>
    • I've started a page an elementary treatment of Hilbert spaces. The intention is to see how much of (simple) Hilbert space theory can be done without using the phrases "As a Hilbert space is a normed vector space ..." or "As a Hilbert space is a metric space ...".

      I haven't gotten very far yet, as can be seen! Also, it's not intended to be Deep Mathematics (there's a mild centipedal justification on the page) but just playing with some ideas and trying to see what a Hilbert space really is.

    • I fixed a bunch of broken links on the lab just now. In case anybody is wondering what all of those edits were.

    • I have just made links to all of the contentful orphaned paged on the main nLab web. However, they may still be walled gardens; Instiki doesn't find those automatically.

      In general, when you create a new page, it's a good idea to create a link to it from some existing page on a more general topic. (The links that I just made may not have been the best!) That way, it's more likely that people will actually find their way to your new page.