Author: Urs Format: MarkdownItexI have added an observation ([here](https://ncatlab.org/nlab/show/Hermitian+form#AsEquivariantModules)) that complex Hermitian inner product spaces $\mathcal{H}$ may be regarded as $(\mathbb{Z}/2 \curvearrowright \mathbb{C})$-modules of the form $\mathcal{H} \oplus \mathcal{H}^\ast$ in the topos of $\mathbb{Z}/2$-sets.
<a href="https://ncatlab.org/nlab/revision/diff/Hermitian+form/6">diff</a>, <a href="https://ncatlab.org/nlab/revision/Hermitian+form/6">v6</a>, <a href="https://ncatlab.org/nlab/show/Hermitian+form">current</a>
I have added an observation (here) that complex Hermitian inner product spaces may be regarded as -modules of the form in the topos of -sets.
Author: Urs Format: MarkdownItexadded ([here](https://ncatlab.org/nlab/show/Hermitian+form#HermitianOperatorsAsZTwoActsCModules)) a characterization of hermitian operators, in this fashion
<a href="https://ncatlab.org/nlab/revision/diff/Hermitian+form/7">diff</a>, <a href="https://ncatlab.org/nlab/revision/Hermitian+form/7">v7</a>, <a href="https://ncatlab.org/nlab/show/Hermitian+form">current</a>
added (here) a characterization of hermitian operators, in this fashion