Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • I was looking at simnplicial topological group and found mention of f¯\bar{f}-cofibration. This is not provided with a link, and a search for the term did not find anything. What is one of these and where is that explained? (It occured to me that it related to the Strom model category structure on Top/BTop/B, but I could not find it on the relevant page.)

    • There was some confusion on the separator page in the section on strengthened sorts of separator. I’ve attempted to sort it out.

    • Bas Spitters had mentioned the following article on the HoTT list. While I suppose the conclusion has to be taken with several grains of salt, I found this discussion interesting and illuminating, and have added it now to the references at foundations of mathematics:

      • Freek Wiedijk, Is ZF a hack? Comparing the complexity of some (formalist interpretations of) foundational systems for mathematics (pdf)

        Abstract This paper presents Automath encodings (which also are valid in LF/P) of various kinds of foundations of mathematics. Then it compares these encodings according to their size, to find out which foundation is the simplest.

        The systems analyzed in this way are two kinds of set theory (ZFC and NF), two systems based on Church’s higher order logic (Isabelle/Pure and HOL), three kinds of type theory (the calculus of constructions, Luo’s extended calculus of constructions, and Martin-Löf predicative type theory) and one foundation based on category theory. The conclusions of this paper are that the simplest system is type theory (the calculus of constructions) but that type theories that know about serious mathematics are not simple at all. Set theory is one of the simpler systems too. Higher order logic is the simplest if one looks at the number of concepts (twenty-five) needed to explain the system. On the other side of the scale, category theory is relatively complex, as is Martin-Löf’s type theory.

    • created stub for (infinity,1)-monad, to go with <a href="http://golem.ph.utexas.edu/category/2010/01/generalized_multicategories.html#c030778">this</a> blog comment
    • While writing this reply on Physics.SE I thought to myself that it is curious that this tight relation between the topics in the title here is rarely made explict in introductions.

      Then next occurred to me the observation that, unfortunately, not even the nnLab did seem to say this. So therefore I have now briefly copied my reply there also to S-matrix – Formalization and to FQFT – Idea – General.

      This deserves to be expanded on much further, of course, but at least it’s a start now.

    • gave virtual fundamental class an Idea-section (feel free to improve) and added a bunch of pointers to the literature in the References-section

    • started stub entry sheaf of L-infinity algebras, but it is still lacking some evident references

      Originally I was going to add a comment on how to axiomatize in differential cohesion a sheaf of L L_\infty-algebras over XX as a pointed object in H /X\mathbf{H}_{/X} which is sent by the reduction modality to an identity. But maybe I’ll better do this tomorrow, when I am more awake (or else whenever that happens again).

    • I have started an entry on rewriting. It is just a stub for the moment.

    • Added to natural number a discussion about the fact that constructively, the natural numbers may fail to be (order) complete, as highlighted by Andrej Bauer in a very nice blog post. I quite like this example, because by interpreting a related lemma in the internal language of a certain sheaf topos one obtains a well-known proposition in algebraic geometry almost for free (see entry); but please let me know if stuff like this is too localized for the nLab.

    • I typed at local topos in the section Local over-toposes statement and poof that sufficient for a slice topos /X\mathcal{E}/X to be local is that XX is tiny .

      What are necessary conditions? Is this already necessary?

    • I added a few words to several complex variables, even though I am out of my depth here. If we have analysts popping by here, hopefully they will get an urge to add more.

    • I wrote analytic function, mostly just a definition. I found a reference that treated the infinite-dimensional case in pretty fair generality (slightly more than I actually did) without making the definition any more complicated (well, except one place where one must insert the word ‘continuous’), so I did that.

    • I added a reference to C-star-system. I propose that we change the name of the page to the C-star dynamical system; this is the standard full term, jargon which is skipping dynamical is confusing for an outsider and not explicative. I can imagine many other things which deserve that name.

    • I have cross-linked de Morgan duality with Wirthmüller context for the statement that in linear logic

      f𝔻𝔻 f. \prod_f \circ \mathbb{D} \simeq \mathbb{D} \circ \sum_f \,.

      Also I have tried to make more of the links in the tables at de Morgan duality point to something.

    • The convention, when describing ring extensions, everywhere I’ve seen a convention, is that

      • for SS a set of primes, “localize at SS” means “invert what is not divisible by SS”; so for pp prime, localizing “at pp” means considering only pp-torsion.
      • adjoining inverses [S 1][S^{-1}] is pronounced “localized away from SS”. Inverting a prime pp is localizing away from pp, which means ignoring pp-torsion.

      I have adjusted four instances of former “at” on three pages that would be, algebraicwise, “away from” (and so they now appear).

      Evidently, this conflicts with more-categorial uses of “localized”; “inverting weak equivalences” is called localization, by obvious analogy, and is written as “localizing at weak equivalences”. This is confusing! It’s also weird: since a ring is a one-object AbAb-enriched category with morphisms “multiply-by”, the localization-of-the-category RR “at pp” (or its AbAb-enriched version, if saying that is necessary) really means the localization-of-the-ring RR “away from pp”.

      You all can sort out that contravariance as/if you like, but don’t break the old algebra papers!

    • Added to field examples of internal fields: the canonical ring objects of the petit resp. gros Zariski toposes of a scheme.

    • Started an entry on closed morphisms, containing examples and characterizations using the internal language. Then I noticed that an entry on closed map already exists, but at the moment the nLab is too slow for proper browsing and editing. Will finish later and maybe merge the entries.

    • I repaired the definition of “unramified morphism” of schemes.

    • I noticed that the two links : André Joyal, The theory of quasicategories and its applications lectures at Simplicial Methods in Higher Categories, (pdf), near the bottom of the entry join of quasi-categories are dead. Does anyone have a more recent link? or if not an alternative reference?

    • I have added the following reference to Berkovich space. Judging from the abstract this sounds like I nice unifying perspective. But I haven’t studied it yet

      • Oren Ben-Bassat, Kobi Kremnizer, Non-Archimedean analytic geometry as relative algebraic geometry (arXiv:1312.0338)

      We show that Berkovich analytic geometry can be viewed as algebraic geometry in the sense of Toën-Vaquié-Vezzosi over various categories. The objects in these categories are vector spaces over complete valued fields which are equipped with additional structure. The categories themselves will be quasi-abelian and this is needed to define certain topologies on the categories of affine schemes. We give new definitions of categories of Berkovich analytic spaces and in this way we also define (higher) analytic stacks. We characterize in a categorical way the G-topology or the topology of admissible subsets used in analytic geometry. We demonstrate that the category of Berkovich analytic spaces embeds fully faithfully into the categories which we introduce. We also include a treatment of quasi-coherent sheaf theory in analytic geometry proving Tate’s acyclicity theorem for quasi-coherent sheaves. Along the way, we use heavily the homological algebra in quasi-abelian categories developed by Schneiders.

    • I wanted to collect some of the stuff recently added to a bunch of chromatic entries in a way that forms an at least semi-coherent story, so I made an entry

      This is built mostly from copy-and-pasting stuff that I had added to dedicated entries, equipped with a bit of glue to make it stick together and form a story.

      (Special thanks to Marc Hoyois for general discussion and in particular for working on the text on the Lurie spectral sequence.)

      I want to further fine-tune this. But not tonight.

    • as you may have seen in the logs, I am working on an entry Higher toposes of laws of motion, something like extended talk notes.

      I am running a bit out of time, and so the entry is unpolished and turns into just a list of keywords towards the end, for the moment. But in case anyone is wondering about the logs, here is the announcement.

      Don’t look at this yet if you feel like just reading. Of course if you feel like joining in with the editing a bit, that’s welcome, as usual.

    • I split off an entry dg-geometry from the entry on Hochschild geometry, since it really deserves a stand-alone discussion.

      Eventually somebody should add the references by Kapranov et al on dg-schemes etc. And much more.

    • stub for infinitesimal extension (and cross-linked a bit)

      Zoran: sorry, I know I should cite that article of yours/your colleagues, could you please add it? Thanks.

    • as last week, I have created an entry that collects some of the recent edits scattered over the nLab supposedly in one coherent story, it’s

      basics of étale cohomology

      Should be expanded a bit more. But not tonight.

    • At the entry classifying morphism, there is a query (not displayed as one):

      Where can I find a construction of the classifying morphism to a classifying space for a G-bundle with connection - using the connections as a 1-form?

      Given the subject matter and the name ‘jim’ plus the location of 96.245.205.76 (Pennsylvania …)????

    • at Artin-Schreier sequence I spelled out the existence proof. This derserves/demands to be further polished and streamlined, but i’ll leave it at that for the moment.

    • in my search for a good way of introducing basics of étale cohomology I switched from Milne to Tamme, and started some hyperlinked index for the latter’s Introduction to Étale Cohomology. As before, in the course of this I created some brief entries for keywords there, if they didn’t exist yet.

      Hope to expand this now…

    • Fixed a couple incorrect statements at hypercomplete (infinity,1)-topos:

      • Remark 1 claimed that having enough points in the 1-topos sense implies having enough points in the ∞-sense. I replaced it with a counterexample from HTT.
      • In Proposition 1 I replaced “finite homotopy dimension” by “locally of homotopy dimension n\leq n”.
    • I have started a hyperlinked index for Milne’s Lectures on Étale Cohomology

      (Up to and including section 27, where the proof of the Weil conjectures starts. )

      In the course I have created a bunch of brief entries, if the corresponding keyword didn’t yet have one. Also cross-linked vigorously.

    • added to the list of equivalent conditions in the definition at étale morphism of schemes the pair “smooth+unramified”. Added a remark after the definition on how to read these pairs of conditions.