Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • started an entry cubic curve,

      For the moment I wanted to record (see the entry) a pointer to Akhil Mathew’s identification of that eight-fold cover of cub\mathcal{M}_{cub} (hence of ell\mathcal{M}_{ell}) which is analogous to the 2-fold cover of the “moduli stack of formal tori” B 2B \mathbb{Z}_2 that ends up being the reason for the 2\mathbb{Z}_2-action on KUKU.

      So here is the question that I am after: that cover is classified by a map ellB/8\mathcal{M}_{ell} \to B \mathbb{Z}/8\mathbb{Z}, hence we get a double cover of the moduli space of elliptic curves d: ellB/2d \colon \mathcal{M}_{ell} \to B\mathbb{Z}/2\mathbb{Z}.

      Accordingly there is a spectrum Qd *(𝒪 top)Q \coloneqq d_\ast(\mathcal{O}^{top}) equipped with a 2\mathbb{Z}_2-action whose homotopy fixed points is tmftmf, I suppose: tmfQ 2tmf \simeq Q^{\mathbb{Z}_2}. (Hm, maybe I need to worry about the compactification…).

      I’d like to say that QQ is to tmftmf as KUKU is to KOKO. This is either subject to some confusion (wich one?) or else is an old hat. In the second case: what would be a reference?

    • have created geometric infinity-stack

      gave Toën’s definition in detail (quotient of a groupoid object in an (infinity,1)-category in TAlg opSpecSh (C)T Alg_\infty^{op} \stackrel{Spec}{\hookrightarrow}Sh_\infty(C) ) and indicated the possibility of another definition, along the lines that we are discussing on the nnCafé

    • I made a new page called twisted form. Unfortunately, this stole the redirect from a sub-heading on differential form. The page is still pretty much a stub. I hope to enlarge it soon.

    • New references at symmetric function and new stub noncommutative symmetric function. An (unfinished?) discussion query from symmetric function moved here:

      David Corfield: Why does Hazewinkel in his description of the construction of Λ\Lambda on p. 129 of this use a graded projective limit construction in terms of projections of polynomial rings?

      John Baez: Hmm, it sounds like you’re telling me that there are ’projections’

      Λ n+1Λ n \Lambda_{n+1} \to \Lambda_n

      given by setting the (n+1)(n+1)st variable to zero, and that Hazewinkel defines Λ\Lambda to be the limit (= projective limit)

      Λ 2Λ 1Λ 0 \cdots \to \Lambda_2 \to \Lambda_1 \to \Lambda_0

      rather than the colimit

      Λ 0Λ 1Λ 2 \Lambda_0 \to \Lambda_1 \to \Lambda_2 \to \cdots

      Right now I don’t understand the difference between these two constructions well enough to tell which one is ’right’. Can someone explain the difference? Presumably there’s more stuff in the limit than the colimit.

      Mike Shulman: I think the difference is that the limit contains “polynomials” with infinitely many terms, and the colimit doesn’t. That’s often the way of these things.

      Actually, on second glance, I don’t understand the description of the maps in the colimit system; are you sure they actually exist? What exactly does it mean to “add in new terms with the new variable to make the result symmetric”?

      David Corfield: The two constructions are explained very well in section 2.1 of the Wikipedia article.

      Mike Shulman: Thanks! Here’s what I get from the Wikipedia article: the projections are easy to define. They are surjective and turn out to have sections (as ring homomorphisms). The ring of symmetric functions can be defined either as the colimit of the sections, or as the the limit of the projections in the category of graded rings. The limit in the category of all rings would contain too much stuff.

    • I have added to K-orientation pointers to the articles by Atiyah-Bott-Shapiro and to Joachim (2004), together with a brief paragraph.

    • Given the series of entries lately, I naturally came to the point that I started to want a “floating context” table of contents. So I started one and included it into relevant entries:

      But this needs more work still, clearly.

    • Missing from braid group was the precise geometric definition, so I put that in.

    • Created BICEP2, currently with the following text:


      BICEP2 is the name of an astrophysical experiment which released its data in March 2014. The experiment claims to have detected a pattern called the “B-mode” in the polarization of the cosmic microwave background (CMB).

      This data, if confirmed, is widely thought to be due to a gravitational wave mode created during the period of cosmic inflation by a quantum fluctuation in the field of gravity which then at the era of decoupling left the characteristic B-mode imprint on the CMB. This fact alone is regarded as further strong evidence for the already excellent experimental evidence for cosmic inflation as such (competing models did not predict such gravitational waves to be strong enough to be detectable in this way).

      What singles out the BICEP2 result over previous confirmations of cosmic inflation is that the data also gives a quantitative value for the energy scale at which cosmic inflation happened (the mass of the hypothetical inflaton), namely at around 10 1610^{16}GeV. This is ntoeworthy as being only two order of magnituded below the Planck scale, and hence 12 or so orders of magnitude above energies available in current accelerator experiments (the LHC). Also, it is at least a curious coincidence that this is precisely the hypothetical GUT scale.

      It is thought that this value rules out a large number of variant models of cosmic inflation and favors the model known as chaotic inflation.

    • just for completeness so that I don’t have gray links elsewhere, I have created some minimum (nothing exciting) at quantum fluctuation.

    • I did some editing at exponential function, to restore what I had believed to be a clear argument, which had been edited out by Colin Tan in favor of his own argument. His argument has been moved to a footnote.

    • Added a statement of the Schmidt decomposition to the page "tensor product of Banach spaces". It seemed the right place for it, since this is the page where the tensor product of Hilbert spaces is discussed.
    • added to chiral differential operator a paragraph briefly summarizing how the Witten genus of a complex manifolds is constructed by Gorbounov, Malikov and Schechtman. Copied the same paragraph also into the Properties-section at Witten genus

    • Wrote up more stuff at pi.

      Incidentally, there are some statements at irrational number that look a little peculiar to me. For example:

      In the early modern era, Latin mathematicians began work with imaginary numbers, which are necessarily irrational. They subsequently proved the irrationality of pi, (…)

      I suppose Legendre could qualify as a “Latin mathematician of the early modern era” if we take a sufficiently broad view (e.g., he spoke a language in the Latin “clade”), but somehow I feel this is not what the author really had in mind; there were those Renaissance-era Italians who began work with imaginaries IIRC. :-) Probably it would be good to rephrase slightly.

      Also this:

      There is an easy nonconstructive proof that there exist irrational numbers aa and bb such that a ba^b is rational; let bb be 2\sqrt{2} and let aa be either 2\sqrt{2} or 2 2\sqrt{2}^{\sqrt{2}}, depending on whether the latter is rational or irrational. A constructive proof is much harder

      Not that hard actually: take a=2a = \sqrt{2} and b=2log3log2b = 2\frac{\log 3}{\log 2}, where a b=3a^b = 3 if I did my arithmetic correctly. Pretty sure that can be made constructive. (Again, I think it’s probably just a case of several thoughts being smooshed together.)

    • Added the proof that every positive operator is self-adjoint.
    • For my first contribution to nLab, I've typed up my notes on effect algebras, with the definitions of a generalized effect algebra and morphism of effect algebras. The proofs here are more basic than most that I've seen on the wiki, but I've decided to include them in the spirit of this being a public lab book.
    • Back in the days I had made several web postings on the “FRS formalism” and how it may be understood as rigorously implementing “holography” in the form of CS/WZW-correspondence. Ever since the nLab came into being there was a stub entry FFRS-formalism which collected some (not all) of these links.

      Now I got a question on how it works. (As a student one cannot imagine yet that communication in academia/maths often has latency periods of several years….) While I have absolutely no time for this now, this afternoon I went and expanded that stub entry a bit more (and maybe it’s at least good for my own sanity in these days). Also renamed it to something more suggestive, now it is titled

      There is still plenty and plenty of room to expand further (urgent would be to mention the tensor produc of the MTC with its dual, which currently the entry is glossing over), but I am out of time now.

    • I have added to SimpSet a list of a few properties of the internal logic of the 1-topos of simplicial sets.

    • Hello all,
      I liked very much the nLab-entry "well-founded relation": concise and informative.
      Do you think "lexicographic order" may be included in the section Examples as another, practically relevant example of well-founded relation?
      If yes, I would be very grateful if somebody could do that (I am not an expert).

      Best regards from Germany
    • Hello,
      I have just created a page on C*-correspondences (http://ncatlab.org/nlab/show/C-star-correspondence). I will add a few stuff about the weak 2-category of C*-algebras built upon those later.
    • An entry which defines both the local category and the local Grothendieck category, two notions which generalize the notion of a category of modules over a commutative local ring.

    • started something at Church-Turing thesis, please see the comments that go with this in the thread on ’computable physics’.

      This is clearly just a first step, to be expanded. For the moment my main goal was to record the results about physical processes which are not type-I computable but are type-II computable.

    • Old discussion at star-autonomous category, which I think was addressed in the entry, and which I’m now moving here:

      +–{: .query} Mike: Can someone fill in some examples of **-autonomous categories that are not compact closed?

      Finn: Blute and Scott in ’Category theory for linear logicians’ (from here) give an example: reflexive topological vector spaces where the topologies are ’linear’, i.e. Hausdorff and with 0 having a neighbourhood basis of open linear subspaces; ’reflexive’ meaning that the map d Vd_V as above is an isomorphism. It seems this category is **-autonomous but not compact. I don’t know enough topology to make much sense of it, though.

      Todd: Finn, I expect that example is in Barr’s book, which would then probably have a lot of details. But I must admit I have not studied that book carefully. Also, the Chu construction was first given as an appendix to that book.

      John: I get the impression that a lot of really important examples of **-autonomous categories — important for logicians, anyway — are of a more ’syntactical’ nature, i.e., defined by generators and relations. =–

    • I have started something at computability.

      Mainly I was after putting some terms in organized context. That has now become

      which I have included under “Related concepts” in the relevant entries.

    • created a minimum at computable real number, for the moment just so as to record the references with section numbers as given there.